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ABSTRACT 

 
Matching corresponding point features in different images, which then serve as tie-points for camera orientation, is a 
basic step of the photogrammetric workflow. Increasingly one is faced with large, unordered image sets, e.g. from 
untrained users or even crowd-sourced from Internet photo collections. In such a setting, tie-point matching becomes a 
bottleneck of the orientation pipeline. On the one hand recording without detailed viewpoint planning implies a denser 
set of viewpoints with larger overlaps – and thus more image pairs – to ensure appropriate coverage and to a reliable 
reconstruction in spite of the ad-hoc network geometry. On the other hand, without a planned recording sequence it is not 
even known which images overlap. One thus faces the additional challenge to determine which pairs of images see the 
same part of the scene and should be fed into the matching step. The paper reviews recent developments in this field, 
which make it possible to generate tie-points and reconstruct unordered image sets with thousands of images. 
 

1.  INTRODUCTION 

The switch to digital photography, and the continuing growth of computing power, storage, and 
transmission bandwidth have lead to important changes in the field of image-based 3D modeling. The 
amount of available image data has increased, and photogrammetric recording has spread to new 
application fields. At the same time improved processing methods nowadays allow one to generate 
fairly accurate reconstructions automatically, even from consumer cameras. Examples of this 
development include the photogrammetric use of small drones, as well as reconstruction from crowd-
sourced images (Agarwal et al., 2009). 
 
Photogrammetric object reconstruction consists of two steps, first image orientation in a common 3D 
coordinate frame (a.k.a. camera pose estimation), and second the generation of a dense point cloud 
or surface model. Her we are concerned with the first step. Surface orientation has also seen an 
impressive development (Hirschmüller, 2008; Hiep et al., 2009; Jancosek and Pajdla, 2011), but since 
it is always carried out locally for appropriate subsets of the oriented camera network, it is less 
affected by the dataset size. Figure 1 illustrates the 3D modeling pipeline. After acquiring images that 
cover the scene of interest, repeatable interest points are extracted from the input images and encoded 
with descriptors of the surrounding image patches. By comparing descriptors from different images, 
one finds point matches between image pairs. The matches serve as input for pose estimation, 
normally with a combination of pairwise relative orientation, tie-point triangulation, and spatial 
resection. Finally, the camera orientations and the sparse tie-point cloud are refined with bundle 
adjustment. 
 

 

 

Figure 1: The 3D modeling pipeline. Interest points are extracted and matched to obtain tie-points. The tie-points enable 
(relative) image orientation. Finally a (optional) dense reconstruction recovers a point cloud or surface model. 
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In some of the new applications of photogrammetric modeling, one is confronted with large 
unordered image sets, meaning that it is not known in advance which images share a common field 
of view and can be matched. Examples include crowd-sourced imagery from the Internet; recordings 
from small micro aerial vehicles (MAVs) with low-quality navigation systems; but also close-range 
projects in general: untrained users have great difficulties to acquire images in a predefined pattern, 
and even experts are slowed down a lot by having to adhere to a strict recording protocol in 
complicated environments (e.g. industrial installations). 
 
Traditionally, photogrammetry has preferred ordered image sets, where the image overlaps (or even 
the approximate orientations) are known before the processing starts; or unordered image sets with a 
small number of marked and easily detectable tie-points (e.g. high-contrast stickers) which can be 
disambiguated by their relative positions. Where available, such a procedure is often still preferable. 
Still, new applications make it necessary to deal also with unordered image sets, and in fact the ability 
to orient arbitrary images can also be useful in the traditional setting, e.g. to reduce field time and 
react quickly to unexpected difficulties on site. At the extreme end of the spectrum we find recent 
research in computer vision that aims to reconstruct 3D scenes from totally uncontrolled, crowd-
sourced Internet images. 
 
Modern projects can consist of thousands of unordered images (or sometimes millions, Heinly et al., 
2015). Brute-force matching thus becomes intractable. To deal with situations where one can no 
longer compare every pair of interest point descriptors for every pair of images, there are three main 
possibilities: (i) reduce the matching time per image pair, by efficient data structures and by reducing 
the number of feature points per image; (ii) reduce the number of images, by finding those which are 
most important for reconstruction; and (iii) reduce the number of image pairs, either by finding those 
for which it is likely that tie points can be found or by sidestepping pairwise matching altogether. 
 

2. IMAGE MATCHING  

Tie-point generation starts with detecting interest points in each image separately. Usually these are 
corner features of the Harris/Förstner type or blob features like Difference-of-Gaussians (DoG). The 
computational cost of this step is normally negligible, since it must be done only once per image, and 
can be easily parallelized. Then a descriptor is computed for each interest point. The (pairwise) 
matching task consists in finding, for each descriptor in the source image, the most similar descriptor 
from the target image. (Dis)similarity is measured by a distance in the feature space, thus finding the 
most similar descriptor amounts to nearest-neighbor search. Beyond being the nearest neighbor, a 
valid match must usually fulfill additional criteria. Often there is a threshold for the maximum 
distance, but this turns out not to be overly effective, because of the high dimensionality of the 
descriptor space. A much stronger criterion, introduced by Lowe (2004), is to retrieve not only the 
nearest but also the second-nearest neighbor, and to compare the corresponding distances. If the 
second-best descriptor is almost as close as the best one, the matching is ambiguous and one might 
pick the wrong point, so the match is discarded. In practice exact nearest-neighbor search is inefficient 
in high dimensions, therefore the standard procedure is approximate nearest neighbor (ANN) search 
with kD-trees, or ensembles of such trees known as kD-forests. 

2.1. Reducing the Number of Features 

Finding approximate nearest neighbors instead of exact ones already makes pairwise matching more 
efficient. A second obvious way to speed up matching is to start with fewer interest points. Ideally, 
one would discard only points that later will not produce a successful match. Note, a good point 
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filtering heuristic will not only speeds up matching, but also will reduce the fraction of wrong 
matches, and this will benefit the subsequent orientation procedure, since robust pose estimation 
techniques like RANSAC are faster and less prone to failure with a cleaner tie-point set. 
 
There are several possibilities to weed out key-points before the matching stage and still obtain useful 
tie-points. The first obvious idea is to raise the threshold of the interest point detector. By design a 
stricter threshold will return fewer points, but in general those which have the highest contrast, and 
thus the best repeatability (and localization accuracy). Importantly, the high detection score does not, 
per se, guarantee points with better matching potential. For example, vegetation under strong sunlight 
tends to generate many strong interest points, which are however very unlikely to become successful 
tie-point matches; whereas points with only moderate contrast like for example stone ornaments under 
diffuse lighting could be valuable tie-points, but will not survive a high detection threshold. 
 
A second strategy at the level of interest point detection is to use only interest points from higher 
levels of the scale pyramid (stronger blur / larger feature scale) for tie-point matching (Wu, 2013). 
Empirically, most correspondences are found between points at nearby scales due to limited scale 
invariance, which means that one can hope to nevertheless obtain enough matches. The price to pay 
is on the one hand a higher uncertainty of the tie-point measurements, which are based on lower-
frequencies of the image content; on the other hand there sometimes are only few low-resolution 
features, which additionally are often not well distributed. As the large majority of points are found 
at fine scales, one quickly is forced to use almost all pyramid levels, in which case the feature selection 
is close to random and loses a large portion of the matchable interest points. 
 
A third, arguably more principled strategy is not to interfere with interest point detection. Instead, 
one lets the interest point detector find a large number of features and then examines the descriptors 
to predict which ones are likely to later generate a successful match. Since keeping points that later 
produce a match is the actual objective, one can expect such a prediction to outperform selection by 
the detector. As mentioned above, to be accepted as a tie-point match two descriptors should not only 
be nearest neighbors, but also must to have a distance below some threshold, and pass the second-
best ratio test. The more important and much stricter filter is the second condition: if the nearest 
neighbor is significantly further away than the next best one, then the match is unambiguous. The 
important point here is that ultimately these tests determine which points become tie-points. It has 
therefore been proposed to learn a binary classifier, which can predict, for a single descriptor, how 
likely it is to pass the tests and generate a match (Hartmann et al., 2014). Like interest point detection 
the prediction can be done independently in each image, before nearest neighbor search. Compared 
to pruning at detector level the method does require an extra effort to compute the larger number of 
descriptors and evaluate the classifier, but that effort is negligible compared to the savings through 
fewer nearest-neighbor queries. 
 

3.  EFFICIENT MATCHING SCHEMES 

The methods discussed so far reduce the time required to find the matches between two given images. 
They thus also apply for conventional, ordered image sets. In unordered image sets a second issue is 
even more important. Without knowledge about the camera layout one would in principle have to try 
all N*(N-1)/2 possible pairs of images, only to find out that the large majority of all pairs do not 
overlap and cannot be matched. Such a naïve approach is infeasible, and different strategies have 
been developed to avoid it. 
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3.1. Reduced Number of Image Pairs by Image Retrieval 

To avoid wasted matching effort one needs to find the connectivity of the image set, i.e. which images 
share a part of their view-fields and can be matched. The connectivity can be formalized by a match 
graph, which has a node for each image and an edge between every pair of images that share a 
sufficient number of tie-points (Snavely et al., 2008). Constructing the exact match graph would again 
require exhaustive tie-point matching, instead one settles for an approximate match graph that can be 
found with a lot lower computational cost. 
 
A first idea is to iteratively build an approximate match graph (Agarwal et al., 2009). Each iteration 
proposes a number of candidate edges, and then verifies them by matching the two associated images. 
Candidate edges connect visually similar images, and can be found with methods borrowed from 
image retrieval. To that end, the interest point descriptors are quantized to a fixed, discrete vocabulary 
of “visual words” (Sivic and Zisserman, 2003; Nister and Stewenius, 2006). Then, images can be 
represented as weighted histograms of visual words, so-called tf-idf (term frequency – inverse 
document frequency) vectors. The scalar product of two tf-idf vectors is an efficiently computable 
measure of image similarity. For a given image in the match graph, one can thus quickly find the M 
(typically about 10) most similar images and add the corresponding edges to the graph. The 
incremental construction of the match graph based on tf-idf vectors can also be interleaved with 
relative camera pose estimation and tie-point triangulation to gradually build up the camera network 
(Havlena et al., 2009). 
 

 

 
If image similarity is a good proxy for matching success, then the selection will generate large 
savings. However, similarity, respectively matching success, as such is not necessarily an indication 
that an image pair is useful for 3D reconstruction. Retrieval methods tend to find images with very 
similar viewpoints. These can of course be matched, but have insufficient baseline to support 3D 
modeling. This leads to a second group of methods, where one directly decimates the image set from 
which the pairs are selected. 

3.2. Reduced Input Image Set 

Unordered image sets, especially those collected from multiple photographers, often exhibit a very 
heterogeneous distribution. Some regions are highly redundant with a number of almost identical 
views, whereas in other regions the viewpoints are sparser and some images are very important to 
preserve the connectivity. If one manages to eliminate the redundant images while keeping the unique 
views, one can expect to obtain a much smaller image set, and thus efficient matching and 

Figure 2: Reducing the full match graph (left) to a skeletal set (right) greatly reduces the number of image pairs that 
need to be matched, while nevertheless preserving an acceptable camera network for reconstruction.  

Figure courtesy of N. Snavely. 
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reconstruction.  Note the slightly different objective: while retrieval-type methods aim to discard 
unmatchable image pairs, here one deliberately also discards many matchable pairs, in order to obtain 
the strongest possible reduction that still permits 3D reconstruction. 
 

 

 
An obvious approach in this context is to cluster the input data by image similarity and keep only one 
image per cluster, the so-called “iconic view” (Li et al., 2008; Frahm et al., 2010). Similarity can 
again be measured with tf-idf distances, or, even more efficiently, with global image descriptors like 
GIST (Oliva and Torralba, 2001). Reconstruction then proceeds only with the iconics, optionally the 
remaining images can be added later. Empirically, larger clusters are often also cleaner, which can be 
exploited in subsequent steps. 
 
A different way to cut down the number of pairwise matching operations is to construct an 
approximate match graph completely, e.g. by thresholding exhaustive pairwise tf-idf similarities, and 
then select a subset of nodes such that all images which are not members of that subset have a 
connection to at least one node who is a member (Havlena et al., 2010). If successful, this procedure 
will yield a small subset that has the necessary connectivity for pose estimation and preliminary 
reconstruction, such that one can register the remaining images to the network later. The search for 
the subset is an instance of a well-studied graph-theoretic problem, the minimum connected 
dominating set (CDS). Finding the minimum CDS is known to be NP-hard, but efficient approximate 
solutions exist which give satisfactory results (Guha and Khuller, 1998). 

3.3. Matching Multiple Images Simultaneously 

So far, all methods have started from pairwise image matching. Multi-view matches are obtained 
afterwards by transitive linking. There are also methods that directly recover matches across multiple 
images. Perhaps the first work explicitly designed for the challenges of (at the time much smaller) 
unordered image sets was (Schaffalitzky and Zisserman, 2002). Descriptors from all images are 
stored in one joint (binary) space-partitioning tree, so that one can efficiently query sets of descriptors 
that all lie within some similarity threshold. Having the descriptors of the entire dataset in one search 
structure avoids pairwise matching and instead directly delivers a set of putative multi-view matches 
in linear time, but that set is heavily contaminated with false matches. The putative matches between 
each pair of images are then counted to obtain an approximate match graph. Finally, the edges of the 
graph are pruned to a maximum spanning tree. 
 
More recently, direct multi-view matching has been demonstrated across thousands of images 
(Havlena and Schindler, 2014), again drawing on ideas from vocabulary-based image retrieval. 
Instead of matching the images in the dataset against each other, they are matched against a very fine 
visual vocabulary (16 million words, Mikulik et al., 2013). Matching is thus reduced to feature 
quantization, under the additional condition that a visual word may appear at most once in an image 

Figure 3: Unordered image sets can be highly redundant in some parts, therefore they can be automatically decimated 
by clustering. The figure shows example images from one cluster that can be represented with a single iconic view. 
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(otherwise the corresponding interest points are discarded, but this concerns only a tiny fraction of 
the points). Since the set of matches from the vocabulary to all input images by transitivity form a 
multi-view correspondence, the method is again linear in the number of images, and can be trivially 
parallelized. Like before, the multi-view matches must nevertheless be broken down into pairwise 
correspondences (i.e., a match graph), because pose estimation is normally done incrementally by 
chaining single-view or two-view orientations that can be estimated robustly with RANSAC-type 
sampling methods. 
 

 

4.  CONCLUSIONS 

We have presented a systematic survey of tie-point matching methods for large, unordered image 
sets. While the matching of sparse interest points can be considered solved for images with moderate 
viewpoint changes, large-scale applications face the problem that applying it to all features across all 
possible image pairs is intractable. There are two levels of speed-ups: on the one hand, one can – for 
any (ordered or unordered) image set – reduce the time needed to establish tie-point correspondences 
between two images, by using appropriate data structures and by cleverly selecting the interest points 
that are used for matching. On the other hand, in unordered image sets the key to efficient matching 
is to limit the number of times the explicit descriptor matching procedure is executed. This can be 

Figure 4: With a sufficiently fine visual vocabulary, quantizing interest point descriptors directly yields unambiguous 
multi-view correspondences. 

 

Figure 5: Examples of models found and reconstructed in a dataset of 13’049 crowd-sourced tourist images from 
Rome. Top row:  Colosseum and Constantine Arch (1’392 images), St. Peter’s Square (967), Altare della Patria 
(498). Bottom row: inside of Colosseum (774), inside of St. Peter’s Basilica (728), Castel Sant’Angelo (251). 
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done by adequately decimating the input image set, by focusing on promising image pairs, or by 
establishing multi-view correspondence directly, rather than separately testing a (quadratically grow-
ing) portion of all image pairs. With a well-designed combination of these strategies, it is now possible 
to generate tie-points across thousands of unordered images in a matter of hours – see Figure 5. 
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