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ABSTRACT 
 
Vision is a very important sense for humans. Robots also need to be aware of their environment for working in it. This 
is even more important for mobile robots that operate in unknown environments that are not prepared for robots. In this 
paper, we focus on the aspect of navigation of mobile robots for applications in search and rescue as well as planetary 
exploration. We discuss a typical vision pipeline and navigation stack that has been developed at the Institute of 
Robotics and Mechatronics of the German Aerospace Center (DLR). In recent years, we have successfully applied the 
solution to a number of crawling, driving and flying robots. We present mobile systems in several applications and also 
discuss the relation between computer vision and photogrammetry. 
 

1. INTRODUCTION 

Robots are becoming ubiquitous in our modern world. In industry, they relieve humans from 
tedious, monotonous and dangerous work. At home, they do vacuum cleaning or lawn mowing. On 
other planets like Mars, robots explore the environment and take scientific measurements. And for 
search and rescue, systems for reconnaissance and tele-operated manipulation are in development. 
For many of these applications, robots have to be mobile and must navigate autonomously. For 
robots at home, autonomy is required for making them useful at all. If we would have to control and 
supervise the systems closely, then it would be easier to do the work ourselves. In planetary 
exploration, scientists want to be in control for defining the next task or next waypoint. However, a 
signal to Mars and back takes between 6 Minutes and 40 Minutes, depending on the constellation of 
Mars and Earth. This large latency prevents an effective remote control. Therefore, going to the 
next waypoint is done autonomously. Similarly, in search and rescue applications, humans want to 
define the high level tasks, but a certain level of autonomy is required to relieve the rescue workers 
from fine grained control of single robots or large teams of robots that may work in parallel. 

Figure 1: Applications of mobile robots in search and rescue as well as planetary exploration.  
Drawings by Martin Görner. 
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Industrial environments can be prepared for mobile robots with special markers, a certain 
infrastructure and central control of all systems. However, we do not want to change our home for 
using a vacuum cleaning robot and we cannot change the environment of Mars for making it more 
robot friendly. Furthermore, certain infrastructure like GPS is not available indoors or on other 
planets. Thus, instead of relying on external infrastructure, mobile robots should depend only on 
their own sensor input and on-board processing. 
The kind of sensors to use depends on the environment and the size of the robot. Laser scanners 
deliver quite precise measurements without post-processing, but measurements are typically 
restricted to one plane. This is useful for indoor environments with straight walls, but not for 
unstructured outdoor settings. Other disadvantages are the weight and price of typical scanners, 
which limits their use to bigger robots. 
Time-of-Flight (ToF) cameras produce a 2D depth image by sending out laser light of a certain 
wave length and measuring the phase-shift of the reflected light with an array of sensors. ToF 
cameras work indoors as well as outdoors, but their resolution is typically limited to less than VGA 
resolution (i.e. 640 x 480 pixel). Furthermore, the field of view and the maximum measurement 
distance are limited by the amount of energy that can be emitted. Not only eye safety is an issue 
here. 
Another measurement principle is structured light, which is perceived by a camera. The popular 
Microsoft Kinect 1 uses a random dot projector and one camera. An internal processing unit 
matches the perceived pattern with an expected pattern for computing depth. Since the camera relies 
on the projected pattern, it does not work outdoors and interferes with other Kinect sensors. 
Furthermore, the maximum measurement distance is limited to just a few meters to ensure eye 
safety. 
An alternative is passive stereo vision. Here, two calibrated cameras perceive the same scene from 
slightly different viewpoints. Distance is computed from the difference of both images. Cameras are 
quite cheap, light-weight and provide a high resolution if needed. A drawback is the processing unit 
that is required for image matching. Passive stereo vision depends on the texture of the scene. It 
works very well outdoors and less well in structured environments with large uniform textures. 
However, an additional projector can help to overcome problems with matching untextured 
surfaces. In contrast to structured light, stereo sensors do not depend on a specific pattern. Instead 
the projected pattern is used as an additional texture. If it cannot be perceived due to too much 
environmental light, then it relies just on the scene texture, which is fine for many scenes. 
This paper focuses on applications of mobile robots in search and rescue as well as planetary 
exploration (Figure 1). The expected environments are mostly unstructured, but typically well 
textured. In these applications, passive stereo vision is used as main sensor.  
 

2. VISION PIPELINE 

We assume that cameras are calibrated. Thus, all intrinsic camera parameters including lens 
distortion are known. Furthermore, the exact rotation and translation between both cameras are 
available. We assume well calibrated cameras with a reprojection error below 0.5 pixel. After 
calibration, the intrinsic parameters as well as the relative orientation must not change. In practice, 
the relative rotation between both cameras is most difficult to maintain. Typically, it must not 
change by more than 0.02°. Another important issue is that cameras must be synchronized by 
hardware or software triggers so that they take pictures at exactly the same time. Otherwise, the 
relative orientation of the cameras would be lost. 
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Figure 2: Vision pipeline. 

After these prerequisites, images are rectified according to the calibration parameters (Figure 2). 
Planar rectification (Trucco and Verri, 1998) projects both images onto a common plane that has the 
same distance to the optical centers of both cameras. This ensures, with the right choice of the 
image coordinate system, that a point in the scene is always projected onto the same image row in 
both images. Points at infinity are also projected onto the same image column, while points that are 
closer, have a smaller column number in the right image as in the left image. In general, 
rectification simplifies all following steps and reduces processing time. 
The rectified images are used for dense stereo matching. Many vision systems used correlation 
based stereo matching (Hirschmüller, 2002), which can be computed in real-time on the on-board 
computers, which are often not very powerful. Real-time in the case of mobile robots typically 
means that at least a few frames per second must be processed. Full framerate with 25 or 30 frames 
per seconds is usually not necessary. 
An alternative to stereo correlation is Semi-Global Matching (SGM), which combines the accuracy 
and density of global stereo methods with the speed of local methods (Hirschmüller, 2008). For 
radiometric robustness, we use non-parametric matching costs like Census (Hirschmüller and 
Scharstein, 2009; Zabih and Woodfill, 1994). Figure 3 (right) shows an example disparity image 
that has been computed by SGM. 
For real-time purposes, we use GPU (Ernst and Hirschmüller, 2008) and FPGA (Gehrig et al., 
2009) implementations of SGM. On our mobile robots, we currently employ an implementation on 
a Spartan 6 FPGA that can process images with 1024 x 508 pixels and 128 pixel disparity range 
with about 14.6 Hz. 
Another purpose of a vision pipeline is to compute the ego-motion of the camera from the stream of 
images. This is done by a technique called visual odometry. Firstly, natural features are detected by 
a fast corner detector like AGAST (Mair et al. 2010). Next, a robust feature descriptor should be 
used for extracting unique signatures. We argue against the use of SIFT features (Lowe, 2004), 
which are quite popular. However, the SIFT detector requires a lot of processing time and rotation 
or scale invariance is not needed for closely sampled image sequences. Instead, we generate 
signatures simply by taking a fixed window around the corners. Similarly to stereo matching, 
radiometric robustness is ensured by performing a Rank or Census transformation (Zabih and 
Woodfill, 1994) on the windows. 
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Figure 3: Example camera image with feature tracking (left) and disparity image (right). 

 
Visual odometry matches the signatures of all corners to the signatures of corners of a past image. 
Avoiding mismatches is very important. A popular choice to achieve this is RANSAC (Fischler and 
Bolles, 1981), which uses a minimal set of corners as sample to compute a model. All corners that 
confirm the model are identified as inlier. RANSAC chooses the samples randomly within a loop. 
The model that maximizes the inlier is chosen as result. 
We use an alternative that works without random sampling by using the 3D reconstructions of the 
corners (Hirschmüller et al., 2002b). For static scenes, the 3D distance between two reconstructed 
corners must be constant. If it differs for the two involved stereo views, then at least one of the 
initial correspondences must be wrong. This criterion can be used for finding a large set of inlier, 
even if there are more outliers than inlier (Figure 3 left). 
After having a reliable set of inlier, the relative transformation between the current and the past 
view can be calculated in closed form by singular value decomposition, from the 3D reconstructions 
of the corners (Haralick et al., 1989; Arun et al., 1987). Thereafter, the reprojection error, or for the 
sake of speed, the ellipsoid error (Matthies and Shafer, 1987) can be minimized by non-linear 
optimization. Finally, the error of the transformation can be calculated by error propagation (Stelzer 
et al., 2012). The transformation error estimate is important for the following processing steps. 
Pure incremental visual odometry suffers from drift, since small errors accumulate over time. We 
use a keyframe based approach that computes the transformation of the current frame to a few 
keyframes. The transformation with the minimal error is used for further processing. Then, the 
current frame is inserted into the keyframe list, such that it replaces a keyframe which is not visible 
any more or one with a high transformation error. In this way, visual odometry is drift free if the 
system is standing. Furthermore, the keyframe approach reduces drift if the system is moving slow 
in relation to the used frame rate. 
Visual odometry is very exact compared to other ways of incremental ego-motion estimation. 
However, it is not robust. It fails if there are no features in the scene, e.g. due to white walls, or if 
the movement is fast, which causes motion blur, etc. However, there are other sensors like inertial 
measurement units (IMU), which do not fail in these cases. An IMU measures linear accelerations 
as well as rotational rates at a high frequency of typically several hundred Hz. Relative pose 
transformations are calculated by integrating over the acceleration measurements. This is quite error 
prone, especially in the presence of the gravitation acceleration, which has to be compensated. 
However, fast movements or movements over a short time can be measured quite accurately. 
Due to their oppositional properties, visual odometry and IMU measurements can complement each 
other very well. This is done by fusing their measurements according to their individual errors using 
a Kalman filter (Schmid and Hirschmüller, 2013). For visual odometry, the error is estimated for 
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each new frame. The error of the IMU is based on statistics. Experiments with a hand-held device 
confirmed that a drift of about 1% of the traveled distance can be maintained, even in the presence 
forced drop-outs of the vision system of several seconds during critical movements. Another 
advantage is that ego-motion estimates are available in the high frequency of the IMU. Together 
with the robustness, this permits using the fused ego-motion poses within the control loop of robotic 
systems. 
 

3. NAVIGATION 

The vision pipeline delivers the ego-motion of the sensor robustly and precisely. Furthermore, it 
produces a dense disparity image. We use both kinds of information for creating a map of the 
environment. Depending on the mobile robot and the application, it can either be a 2D, 2.5D or 3D 
map. 2D maps are useful if it is known that the ground is flat, e.g. indoors. However, we do not 
consider this special case. 
For uneven and unstructured natural outdoor environments as considered in this paper, a 2.5D map 
is appropriate (Stelzer et al., 2012). Here, each point on the map has an associated height. For 
creating such a map, the disparity images are reconstructed and transformed into a world coordinate 
system by using the computed ego motion. We use a statistical approach for fusing the 
measurements with existing information of the map. Next, the map is evaluated for traversability, 
by calculating the roughness and slope. Figure 4 (left) shows a map that is colorized according to 
traversability. The area around stones is marked by red. Green signals traversable terrain for the 
robot. This permits planning a safe path to a given target point. It is important, that the map changes 
all the time when new disparity images are integrated. Thus, the path to the target point is re-
planned accordingly, if necessary.  
 

Figure 4: 2.5D (left) and 3D (right) maps, created from dense stereo images and ego-motion measurements. 

 
3D maps as shown in Figure 4 (right) are useful for modeling environments with more than one 
height above a virtual ground plane. This can be due to overhangs that must be considered by the 
path planner or due to modeling several floors above each other as shown in this example. A 3D 
map can be represented as voxel map. A voxel is either empty or occupied. Similarly to the 2.5D 
map, the disparity images are reconstructed and the points fused into the voxel map by a statistical 
approach. The only difference to the 2.5D approach is that path planning has to be done in 3D 
instead of a 2D grid. 
The difficulty with the described approach is the drift which is still inherent in the ego-motion 
estimation. After traveling some time and coming back to a previously encountered location, there 
usually is a visible offset between the previous and current robot position, depending on the size of 
the loop. This problem is tackled in robotics by Simultaneous Location and Mapping (SLAM). 
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After recognizing a place as previously visited, the position error can be distributed over the loop. A 
global optimization ensures the proper distribution of errors. 
The recognition of places can be done in different ways. One possibility is to work only with local 
maps (i.e. small maps). Registration between local maps is attempted if it appears useful. Successful 
registrations then lead to loop closures (Brand et al., 2014).  
 

4. APPLICATION 

The focus of this paper is on outdoor robotics. The described vision pipeline and navigation stack 
have been applied to different kinds of robots in different scenarios. 

4.1. Search and Rescue 

The DLR crawler is a robot with 6 legs (Figure 5). All joints are equipped with torque sensors that 
are used for measuring ground contact or collision with obstacles. The control algorithm is inspired 
from insects and adapts automatically to the ground as well as special conditions, like the loss of 
control of one leg (Görner et al., 2010). The robot is equipped with a stereo camera and an IMU for 
autonomous waypoint navigation according to Section 2.  and 3. This enables the operator to select 
only target points. Going to the target points is done fully autonomously by the robot (Stelzer et al., 
2012). A robot like the crawler can be imagined to explore small holes, e.g. in collapsed buildings, 
etc. 
 

 
Figure 5: DLR crawler. 

 
More challenging than rather slow crawling robots are flying quadcopter systems (Figure 6 left). 
The DLR Pelican system (Schmid et al., 2013) is equipped with stereo cameras that are looking 
slightly downwards, so that the scene in front as well as a part of the ground is visible. An IMU 
supports the visual odometry as explained in Section 2. . A Spartan 6 FPGA processes dense stereo 
images by SGM with 14.6 Hz. For processing intensive tasks, we used an on-board Core2Duo CPU. 
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The Robot Operating System (ROS) serves as framework and a voxel map integrates the depth 
images. In one experimental setup, we flew manually around a small building, entered it through a 
door, flew through a room, then upstairs to the first floor, left the building through a window and 
landed on the same spot as we started from. The total trajectory was about 110 m with a loop 
closure error of just 76 cm (Schmid et al., 2014). All processing was done in real-time on board 
without depending on any external infrastructure (Figure 6 right). 
The next challenge is autonomous flights in which an operator only selects target points in the 
camera image or in the map that is built by the system. The quadcopter determines its ego motion 
by the combination of visual odometry and IMU measurements and uses these measurements within 
the control loop for stabilizing the flight. As before, a voxel map is created from depth images. The 
voxel map is used for incrementally planning a collision free path to the target point. At the target 
point, the system hovers until another target point is defined. In this way, environments not visible 
to the operator can be explored. 
In one experiment, we took the system out of the laboratory into a coal mine (Figure 7). Since the 
environment is quite dark, the quadcopter was additionally equipped with LEDs that were 
synchronized with the exposure of the camera images. Coping with dust and air turbulences, due to 
narrow corridors, pushed the system to its limits. In the experiment, the operator defined target 
points that led the quadcopter around a corner outside direct visibility. The system successfully 
created a map and returned to the start position (Schmid et al., 2014). 

 
 

Figure 6: DLR Pelican system (left) and output of on-board, real-time processing (right). 

Figure 7: Autonomous flight of the DLR Pelican quadcopter in a coal mine. 
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4.2. Planetary Exploration 

For the exploration of Moon or other planets like Mars, mobile robots play a role of increasing 
importance for scientists. The DLR Lightweight Rover Unit (LRU) is a prototype of the next 
generation of exploration rovers (Figure 8 left). It weighs about 30 kg. Each wheel has an individual 
motor for driving and turning. The system can move omni-directional. The front and rear boogies 
can be rotated separately around the body axis. In this way, the rover can adapt to difficult terrain. 
The system can climb slopes of 45°. 
 

 
Figure 8: DLR Lightweight Rover Unit (left) and presentation of autonomous waypoint navigation (right) at Berlin Air 

Show (ILA) in Mai 2014. 

 
The LRU uses a stereo camera on a pan-tilt unit as well as an IMU in the rover body. All processing 
as explained in Section 2.  and 3.  are implemented on one on-board computer that is equipped with 
an i7 quadcore CPU. As for the flying quadcopter systems, SGM is executed on a Spartan 6 FPGA. 
At the Berlin Air Show in Mai 2014, we presented controlling the system with a simulated round 
trip communication delay of 3 seconds, i.e. like controlling a rover on the Moon. Direct remote 
control is very difficult under these conditions. However, due to the on-board autonomous waypoint 
navigation, selected guests could mark target points in the camera image or in the map (Figure 8 
right). The LRU reached these target points safely, by avoiding stones that were used as obstacles. 
Currently, the LRU is equipped with a manipulator for taking part in the SpaceBot Cup competition 
which takes place in November 2015. The task is to find two kinds of objects in an unknown, 
planetary like environment and put them into and onto a third object. All of this has to be done with 
on-board autonomy, with very little possibilities for the operation crew to intervene, like in a real 
space mission. 
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Figure 9: Rover as carrier for a quadcopter. Both systems are operated by autonomous waypoint navigation. 

4.3. Cooperating Mobile Robots 

Since different mobile systems have different abilities they can be combined to a robot team. In one 
experiment, we used a rover as carrier platform for a quadcopter as shown in Figure 9. Both 
systems were operated by autonomous waypoint navigation with on-board processing. The rover 
was sent to a spot next to a crater. The quadcopter was commanded to start and model the 
environment from the air. In the meantime, the rover drove to a different place. Then the quadcopter 
was commanded to find the rover and to land on it. All commands were just given as target or 
waypoints. The on-board computers of both systems controlled everything else autonomously. 
Future work includes building common maps for navigation and sharing them between all robots of 
a bigger team. 

4.4. Driver Assistance Systems 

Autonomous navigation of mobile systems is a research topic from which many techniques can be 
used for daily life applications. Daimler AG is using the SGM algorithm for supporting driver 
assistance systems. A stereo camera captures the scene in front of the car. SGM is implemented on 
a low-power FPGA (Gehrig et al., 2009). The dense depth image supports many driver assistance 
functions like active breaking. Figure 10 shows that SGM is much better suited for this kind of 
application than traditional correlation methods since SGM delivers depth images that are denser. 
Furthermore, it also produces less error in regions with low contrast and is robust against repetitive 
structures. This can be observed at the rail of the bridge. 

Figure 10: Camera image with depth image overlay. Red is near and green is far away. Stereo correlation (left) and SGM 
(right). Courtesy of Stefan Gehrig (Daimler AG). 



152  Hirschmüller et al. 
 

 

4.5. Roboception 

Many of the techniques that were described in this paper are interesting for other researchers and 
industrial partners and shall be made available for the community, too. Roboception GmbH1 is a 
DLR spin-off that is going to commercialize robust, real-time ego-motion estimation by fusion of 
visual odometry and IMU measurements. The focus is on robustness, the possibility to include the 
measurements in the control loop of robotic systems as well as low computational power 
requirements, e.g. processing on light-weight, embedded ARM processor boards. Also depth images 
by Semi-Global Matching will be available. Last but not least, a general ROS interface will enable 
the product integration with different kinds of robots easily.  
 

5. DISCUSSION 

We have described the components of a typical vision and navigation pipeline for mobile robots. A 
variety of robots for different applications were presented. While the focus was on outdoor robotics, 
we have shown that the robots were also capable of indoor navigation. 
Important for computer vision in robotics are robustness and speed. Computer vision methods may 
be used within the control loop of robotic systems. Failures of vision methods endanger system 
control and autonomous operations. This is in contrast to photogrammetry, where automatic 
computation is nice for reducing human workload, but a fall back to human work is acceptable. On 
the other hand accuracy does not have the highest priority in computer vision. However, in 
photogrammetry it is a major goal. 
These differences should be kept in mind when looking at solutions in the fields of computer vision 
or photogrammetry. Finally, an innovation-driven way to make the technology available is 
presented. 
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