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ABSTRACT 

 
In this article the principle of laser scanning is recapitulated starting from the LiDAR equation and the measurement 
possibilities, especially beyond the range measurement, are explained. This includes the radiometric measurement, 
bathymetric LiDAR, waveform capturing, new possibilities from UAV platforms, and single photon counting detection. 
It is demonstrated how these measurements can be used to derive land cover, models of topography, and to detect 
objects. 
 

1.  INTRODUCTION 

Photogrammetry is often understood as a 3D reconstruction method of our environment based on 
the measurement of angles, directions, or rays, expressed through the collinearity equations. A first 
use of lasers for distance measurement in photogrammetry was thus a supporting tool for 
automating aerial triangulation (e.g. Kilian and Fritsch, 1993, Ackermann, Lindenberger, and 
Schade, 1992). Coupling satellite navigation by GPS and laser profile measurements provided direct 
georeferencing of aerial images, on the one hand, and parallax estimation, on the other hand. 
Alternatively, scanning the laser across the flight direction was understood as a technique for area-
wise measurement over coasts and wadden sea (Ackermann, 1992), an area demanding for 
extracting homologous points and image matching due to the low texture of images acquired over 
these surfaces.  
Airborne laser scanning as a method to capture 3D data of our environment was additionally 
strongly pushed by neighboring disciplines, especially hydrology (and hydraulic engineering), 
forestry, and geography. In forestry the ability to see into the forest was appealing, thus sensing a 
vertical profile from canopy to ground. It also gave the possibility to detect small forest openings at 
ground level. In geomorphology the high resolution of one point on 4 m2 was appealing, because it 
allowed obtaining information on 3D shapes of unprecedented accuracy, thus enabling a better 
understanding of the processes forming the landscape. Likewise, floodplain modeling for 
hydrodynamic numerical simulation of flood events required detailed elevation information.  
In photogrammetry airborne laser scanning research was first concentrating on terrain modeling, 
especially at forested sites (Kraus and Pfeifer, 1998), see also references in Sithole and Vosselman 
(2004), a comparison of terrain extraction methods based on an OEEPE dataset, and Korzeniowska 
et al. (2014). Calibration and accuracy were not in focus first, because terrain elevation 
measurement in forests became for the first time feasible through ALS (Airborne Laser Scanning). 
Thus, improving precision was not initially in the focus. Only later calibration became a topic of 
wider interest, leading to strip adjustment (Fritsch et al., 1994). Building extraction and building 
modeling from ALS point clouds was a research topic as well, which has long been in the interest of 
photogrammetry.  
Terrestrial laser scanning developed in a certain way independent from airborne laser scanning. One 
reason may be that the manufacturers of scanners were different, another might have been that close 
range vs. topographic approaches were putting different requirements on processing and analysis of 
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data. The photogrammetric application of TLS was in established fields, thus concentrating on 
cultural heritage, on the one hand, and engineering applications, on the other hand.  
However, the LiDAR principle allows more than “performing photogrammetry” with a different 
measurement device. It allows new types of observations and builds a bridge to remote sensing. It 
gives a possibility to engage with neighboring disciplines by exploiting and providing the 
knowledge on the measurement principle. These ideas will be explored in the following sections.  
 

2. LIDAR PRINCIPLE 

The approach taken here is to start rather from the LiDAR equation (see later Eqs. 2, 3) than from 
the polar measurement principle (Eq. 1).  
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The exterior orientation of the platform (ܺ଴, … ߢ) may be dynamic or indexed for static setups. The 
observations are the angles ߙ and ߚ and the range ݎ. Adding the range ݎ is – in some way – similar 
to transforming a theodolite to a tacheometer by adding the laser range finder. As an addition, the 
laser range finder may provide two ranges in case of an ambiguous return signal. Considering the 
area coverage of photogrammetry, induced by the image area in the focal plane, laser scanning 
would thus be a “polar photogrammetry”. However, when starting from the LiDAR equation, the 
physical aspects are dominating, giving rise to the questions of the wavelength used, the interaction 
of EM radiation with the terrain surfaces (the scattering mechanisms), and the power received. This 
bears a similarity to the radiometric calibration of aerial cameras (Markelin, Honkavaara et al., 
2008).   

2.1. LiDAR equation 

The LiDAR equation is similar to the RADAR (RAdiowave Detection And Ranging) equation. It 
relates the power of the emitted light to the power received at the detector (Jelalian, 1992). The time 
lapse between emission of the signal and receiving its echo provides the ranging capability. 
However, as Measures (1992) once put it, additional observations become possible, thus LiDAR 
(LIght Detection And Ranging) should rather stand for Light Identification, Detection, Analysis and 
Ranging.  
In the static form, the LiDAR equation relates the emitted power ாܲ to the detected power ஽ܲ 
(Jelalian, 1992, Wagner et al. 2003, Wagner et al. 2006).  
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The laser signal is emitted with the opening angle ߛா, travels through the atmosphere (Factor ߟ஺்ெ), 
is scattered at an object (ߪ) in distance ܴ, travels back through the atmosphere and is detected 
(lens/telescope diameter/aperture ܦ஽). The background power ஻ܲ adds to the detected signal. The 
first fraction in the above formula has in the nominator the illuminated area at distance ܴ, and 
multiplied with ாܲ the power density at a target, the second fraction is the ratio of the detector area 
to the area of the omnidirectional backscatter at distance ܴ, a sphere. In this form all target 
properties are found in the target cross section ߪ. The cross section can be understood as area 
crossing the beam direction. It’s unit is thus m2, representing an effective area contributing to the 
backscatter.  
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The above equation is already a specialized form of the LiDAR equation. It assumes a coaxial 
system, in which the illuminated area is always in the field of view of the detector (Riegl et al., 
1974, Pfeifer et al., 2008). Otherwise, a geometric efficiency factor, ீߟாைெሺܴሻ, becomes a 
multiplicative term to be considered additionally. Furthermore, it only applies in the far field, in 
which a linear widening of the signal holds. It also assumes single scattering, thus multiple 
scattering of a photon before detection is neglected. Additionally, the backscattered signals caused 
by different particles (or surfaces) are independent of each other, thus no phase relation between the 
individual returns exists. Polarization is not considered. 
The power terms ௫ܲ	ሺݔ ൌ ,ܦ ,ܧ  ሻ  may also be replaced with the number of photons ௫ܰ, keepingܤ
however in mind, that ஽ܰ is the expected number of photons. The power terms are also functions of 
the wavelength ߣ. In “photogrammetric laser scanning” this is further restricted to elastic scattering, 
i.e. no change of wavelength (or frequency shift) due to scattering. Inelastic scattering is exploited, 
e.g., to detect water surfaces in bathymetric lidar (Guenther et al., 2000). A frequency shift in the 
return signal may also be caused  by the Doppler effects of moving targets. The latter is exploited in 
wind lidar (Weitkamp, 2005).  

2.2. Echoes, cross section, waveform, and radiometric measurement 

The term ߪ is the target cross section and contains the target properties. If only the range to the 
target shall be determined, no further consideration is necessary. Also in this case, multiple echoes 
of topographic objects may be generated from one emitted pulse, if the first object along the laser 
beam does not fill the entire footprint, i.e. the illuminated area (ሺߛாܴሻଶ4/ߨ). Linear targets, as e.g. 
wires, only have a scattering area proportional to ܴ, whereas single targets, e.g. a “single leaf”, have 
an area smaller than the footprint, independent of ܴ (Jelalian, 1992). Extended targets have an area 
proportional to ܴଶ, and always cause only a single echo.  
If, however, other properties than the range are additionally of interest (Wagner et al., 2003), the 
cross section ߪ is either split into the product of area ܣ, reflectivity ߩ, and scattering direction 
characteristics (homogeneous scattering into the solid angle Ωሻ, ߪ ൌ ܣ ∙ ߩ ∙  Ω, or its value along/ߨ4
the range direction is analyzed, leading to the differential cross section ߪሺܴሻ. Both approaches need 
a formulation, in which the signal power is described as a function of time. With some 
simplifications and neglection of terms for the sake of clarity, and considering only one target, ߪ௜, at 
the representative range ܴ௠,௜, this leads to the dynamic LiDAR equation. 
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The integral is the convolution of the emitted signal with the differential cross section of the target, 
 .is the extent of the target in the range direction, and ܿ is the speed of light (group velocity) ߜ2
Multiple echoes are superimposed onto each other and may overlap in ஽ܲሺݐሻ, with ஽ܲሺݐሻ ൌ
∑ ஽ܲ,௜ሺݐሻ௜ . In waveform LiDAR ஽ܲሺݐሻ and  ாܲሺݐሻ are sampled in fractions of the pulse duration. As 
the pulse duration for commercial topographic lidar systems is in the order of 2ns to 10ns, the 
sampling is correspondingly in the order of 0.5ns to 2ns. Without going further into technical 
details, this allows  
 to determine the amplitude and width of detected echoes by analysing the sampled ஽ܲሺݐሻ,  
 to perform a deconvolution of ஽ܲሺݐሻ and ாܲሺݐሻ to obtain	ߪሺܴሻ, and in consequence 
 to obtain ߪ from ߪሺܴሻ. 

With the additional assumption of Lambertian targets, i.e., diffuse scattering, and the known 
footprint area of an extended target, the diffuse reflectivity of a surface can be inferred from Eq. (4). 
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Here α is the incident angle, i.e. the angle between the surface normal and the direction of the 
LiDAR signal. If surfaces are sampled by scanning LiDAR, then the 3D position of the points can 
be used to estimate a surface and thus also α.  

2.3. Wavelength 

As written in Sec. 2.1 and 2.2 the reflectance of an object has an impact on the power of the 
detected echo and the LiDAR equation needs to be understood as a function of wavelength. Thus, 
the choice of wavelength for a topographic laser scanning depends not only on the transmittance 
through the atmosphere, but also on the objects to be studied. For snow, e.g., the choice of the 
commonly available wavelengths (e.g.) 1.064µm and 1.550µm make a notable difference (see Fig. 
1). The figure demonstrates also, that if the object investigated is known, then some of its 
parameters may potentially be detected from the reflectance, provided a suitable wavelength is 
chosen. However, using the example of snow, its grain size is not the only parameter of influence 
but also snow impurities have an influence on the reflectance (Kuhn, 1985, Aoki et al., 2003).  
 

 
Figure 1: Refelctance curves for water, vegetation, and soil (Swain and Davis, 1979, www.usgs.gov). 

 
Fig. 1 shows only one curve for vegetation. The health state, on the one hand, but also species cause 
deviations from this reflectance curve. Thus, multiple wavelength lidars are being developed for 
studying vegetation (Collin et al., 2010, Douglas et al., 2014). The low reflectance from clear water 
leads to measurement drop outs at longer wavelengths. At short wavelengths, especially in the 
visible green light, the light penetrates also the water column. Scattering and absorption are much 
stronger in the water than in air, thus the visibility is reduced to a few meters, depending on the 
power of the emitted signal, the turbidity of the water body, and the bottom reflectance. 
Bathymetric LiDAR, typically at 532nm, is a technology for measuring the bottom of rivers and 
sea, for a restricted depth zone.  
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2.4. Single photon counting  

The detection of the backscattered signal in topographic LiDAR may be performed with APD 
(avalanche photo diodes), which convert the incoming power to an electric current, which may then 
be analyzed electronically (discrete return systems) or digitized (waveform recording).  
APDs can also be operated to detect single photons (SPAD, Single Photon Avalanche Diode), 
which leads to single photon counting systems (Zappa et al., 2007), however SPC detectors can also 
be built with other means. The time of such a single photon detection event can be determined, 
leading to a range measurement. The probability that a photon is detected is proportional to the 
number of photons arriving at the detector. However, in this mode, the photo diode exhibits a dead 
time, which means that a certain time is required before a new photon can be detected. Also 
background photons, not originating from the measurement process, may be detected.  
In time correlated single photon counting (TCSPC, Becker (2005)) short pulses are emitted at a high 
repetition rate in a static setting. From each pulse one backscattered photon is detected. The 
differences between the time of the detection event and the corresponding pulse emission are sorted 
in a histogram, which is further analyzed (e.g. mode detection, cross correlation with a reference 
pulse shape, or statistically more advanced estimation (Hernández-Marín et al., 2007)). To mitigate 
the effect of the dead time of a single detector, detector arrays may be used, thus enabling a range 
measurement from one pulse.    
Single photon counting (SPC) is a possibility to detect very weak signals, e.g. for LiDARs on 
satellite platforms observing the Earth (Degnan, 2001).   
 

3. EXAMPLES 

The versatility of the LiDAR measurement principle was described above from a theoretical point 
of view. In this section it shall be demonstrated by examples. The sources of these examples are 
mentioned, but of course similar work can be found at a number of institutions.  

3.1. Precise ranging  

An advantage of LiDAR is the direct 3D measurement. Cameras have the advantage of higher 
resolution, physically bounded because of the aperture diameter (beam divergence vs. diffraction 
blur), and the resolution of image matching surface models may be close to that of the images. 
However, points provided by (pulsed) laser scanning systems are in that sense more reliable, that 
they originate in almost all cases from reflecting surfaces. The continuity assumption of image 
matching may lead to points on a virtual ramp from one surface level to another.  
Measurement precision of LiDAR ranging is in the domain of a few mm for terrestrial laser 
scanners, e.g. up to 100m, and in the domain of cm for airborne laser scanning. Thus, the 
dominating error sources originate in georeferencing. Using the overlapping areas of strips the lidar 
system can be calibrated on the job while the georeferencing can be improved. Algorithms have 
matured and the trajectory can be improved by time-dependent functions (e.g. splines), provided 
overlap is sufficiently strong (Glira et al., 2015ab). In that sense, strip adjustment has reached the 
same versatility as bundle block adjustment of images.  
As illustrated in Fig. 2, airborne laser scanning provides a precision of a few centimeters. Of course, 
rough areas are subsampled and elevation changes are only significant over larger areas. Using 
multi-epochal strip adjustment, introducing geologically stable areas as tie-area between two 
epochs, allows detecting small height changes (stable areas show changes below 2cm) and relate 
them to changes in the perma-frost and other geomorphological processes (see, e.g., Heckmann et 
al., 2015). 
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Figure 2: (a) Shaded relief map with overlaid flight lines of a glacier in the Alps. (b) Residual strip height differences 
after strip adjustment within one flight mission (masked to use only smooth areas). (c) Stable bedrock areas (red) 
mapped by geologists. For multi-epochal strip adjustments, correspondences are only established within these areas.  
(d) Height differences between two epochs (from July to September).    

3.2. Waveform, Echo Width, and Reflectance  

Detecting the ground below the canopy is a consequence of both, the multi-target capability of 
pulsed lasers due to short pulses leading to temporally distinct echoes, and the monostatic setup of 
the LiDAR. The latter means that the gap in the foliage used to illuminate the ground with the laser 
is the same gap used by the echo to reach the detector.  
Still, this means that not all last echoes over forested areas are from the ground. It is especially 
difficult to distinguish between echoes from low vegetation above the forest ground and the “real” 
forest ground. However, vegetation typically has a larger height distribution within the footprint 
area than ground, thus a wider differential cross section ߪ௜ሺܴሻ. This can be used to increase the 
reliability of ground extraction and in consequence also to detect solid objects on the ground.  
As illustrated in Fig. 3, the waveform information supports extraction of downed stems by an 
improved separation of low vegetation and forest ground (Mücke et al., 2013). Waveform 
information is also beneficial for classifying vegetation as such, also within grass lands. Fig. 4 
shows a classification of a protected grassland habitat based on machine learning from field 
reference data. The data was acquired at two phenological states (July 2011 and March 2012), with 
a density of 12.8 points/m2. The features used were measures of point distribution in various 
neighborhood size, calibrated reflectivity, and echo width (Zlinszky et al., 2014).  
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Figure 3: (a) Shaded relief map of forest ground, locations I – VI showing downed stem candidates; (b) echo width 
map, (c) detected downed stems, black lines indicate GNSS-measured stems for reference. The black rectangles X and 
Y indicate two areas of low (X, echo width <4 ns) and high (Y, echo width > 6ns) echo widths. While X represents true 
forest ground and downed stems as solid objects, Y results from shrub and herbaceous vegetation. 

 

 
Figure 4: Ortho photo of grass land, calibrated reflectance, echo width, and classification based on lidar waveform data 
of two epochs.  
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Small footprint LiDAR is only one option for studying vegetation, including also urban vegetation 
(Rutzinger et al., 2008). Medium-sized and large footprint LiDAR provides information over larger 
areas and thus spatial aggregation (Lefsky et al., 2005), which can be selected to fit the size of the 
objects studied.   

3.3. Wavelength  

Classification of objects in our environment profits improves, if multiple, complementary 
measurements are available. Image matching can provide geometry and the images themselves 
provide color, or even calibrated reflectance (Markelin et al., 2008). Hyperspectral imaging can be 
argued to be “superior” because each pixel has a high number of measurements (Asner, 2013). As 
mentioned in Sec. 2.3 multiple wavelength systems are being developed (Vauhkonen, Kaasalainen 
et al., 2013, Puttonen et al., 2014), allowing, e.g., the determination of NDVI per detected echo.  
However, not only the reflection strength can be used. Höfle et al. (2009) showed that absorption 
can be used to detect water surfaces, and transmission (and reflection at other surfaces) is exploited 
in bathymetric LiDAR. From all visible and infrared wavelengths the green light is the one to 
propagates best into and in the water. This is exploited in bathymetric LiDAR. A green LASER 
pulse is emitted from the sensor, travels through the atmosphere, is refracted at the water air 
interface, travels through the water column (with stronger absorption and scattering), hits the river 
or ocean ground surface, and travels the same way back to the sensor. Over dry land reflections are 
caused by surfaces. However, the different reflection properties at green light (e.g. 532nm) in 
comparison to the standard topographic wavelengths (e.g. 1064nm and 1550nm) need to be 
considered (see Fig. 1).  

 
Figure 5: (a) Bathymetric LiDAR measurement principle, (b) shaded relief map and water depth, (c) deposition and 
erosion of material due to a 30-year flood in the main channel and temporary side channels during the flood. 
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As illustrated in Fig. 5, the river channel and the alluvial area can be acquired simultaneously with 
airborne laser scanning using a green LiDAR (Mandlburger et al., 2015a). This requires automatic 
classification of echoes into dry ground, wet ground, water surface, and vegetation (and other 
objects). This is intertwined with modeling of the water surface which is required for refraction 
correction.  

3.4. UAV LiDAR  

LiDARs are active instruments, thus they need a power supply. The scanning mechanism requires 
additionally moving parts, adding to power consumption and weight. Thus, cameras are more 
frequently mounted on remotely piloted airborne systems (RPAS) or UAVs (unmanned aerial 
vehicles), see, e.g., Fritsch and Cramer (2013). However, low flying UAVs with a laser scanner can 
provide point clouds of higher resolution (Mandlburger et al., 2015b, Pfennigbauer et al., 2014). 
Lower distances from sensor to target also leads to smaller footprints, but demands on 
georeferencing are growing as well.  
A vision is to make engineering surveys of infrastructure lines (e.g. streets, maybe excluding 
tunnels for the time being) rather from airborne platforms than from terrestrial positions. Another 
application, demonstrated in Fig. 6, is to identify trees in the forests not by their canopy (Lindberg 
et al., 2014), but by their stem. This would allow modeling diameter at breast height (DBH) from 
the point cloud rather than inferring it from allometric relations between DBH and tree height. At 
this point also LiDAR mounted on quads for forest inventory is an interesting option (Kukko et al., 
2012). While georeferencing may be more demanding, bringing the sensor even closer to the 
objects of study may be of interest.  

 
Figure 6: Left: UAV LiDAR point cloud of riparian forest colored by target reflectance. Right:  The point cloud at 1.2 
to 1.4 m above ground is shown (red dots), together with automatically detected and fitted circles (green). For each tree, 
the estimated diameter and the deviation from in-situ measurements are plotted.  
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3.5. Single photon counting 

Single photon counting LiDARs are flown in airborne experiments, e.g. MABEL (Multiple 
Altimeter Beam Experimental Lidar, in preparation of NASA’s ICESat 2 mission, see Brunt et al. 
(2011)), but not used for operative (satellite) missions yet. Single photon LiDAR data is a set of 
photon detection events. In that sense it has the same “format” as discrete return single echo laser 
scanning data. A photon detection event relates to a certain time, but has no additional parameters 
(like amplitude or echo width). It can be georeferenced knowing the exterior orientation of the 
sensor and the time lapse between emission and detection. Using array detectors, multiple photons 
are received, adding up to a certain numbers of events per time slice, which has a “format” similar 
to a waveform.  
 

Figure 7: Left: simulated differential cross section of tree crown and ground; middle, red curve: detection events of an 
array SPC sensor without dead time, blue curve: average of 10 signals; right: detected signal using a dropping detection 
probability as typically given. Here, the photon detection efficiency is an inverted Gaussian CDF. Note the reduction in 
peak size of the ground return.  

 

  
Figure 8: Left: ortho photo over a douglas fir plot, points selected in cylinders of 5m diameter along the shot direction 
of a waveform dataset, middle: selected points colored according to height, right: simulated SPC detector signal based 
on the waveform LiDAR data considering the drop in photon detection efficiency.  

 
Figs. 7 and 8 show simulations. SPC data from airborne platforms was also used to estimate tree 
height (Awadallah et al., 2014), with differences to tree height estimated from standard LiDAR data 
in the order of a few decimeter.  
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4. CONCLUSIONS 

In this article the versatility of the LiDAR measurement principle was demonstrated: choice of 
wavelength, multi-target capability, waveform, radiometric measurement, single photon counting. 
Further features not mentioned are polarization and footprint size. While starting from a more 
physically oriented description, the scanning pattern and area coverage introduces leads to concepts 
and models very similar to those derived from image-based photogrammetry. This includes strip-
adjustment, classification, and effects or requirements related to the sensor carrying platform.  
This article introduced also a number of differences between measuring and modeling from 
photographic images and scanning LiDARs, while some were not mentioned: resolution, reliability, 
precision, physical quantities vs. relative measures (texture), penetration depth into vegetation 
canopy, etc. However, even more interesting is to exploit those differences to reach a more efficient 
and comprehensive description of our environment. This domain is largely unexplored.  
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