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ABSTRACT 
 
For almost any region of the world multiple wide-area DEMs are available nowadays. Thus, the question arises whether 
this redundancy can be used to fuse two (or more) DEMs and generate a new one that is more accurate than any of the 
inputs. We first give a brief overview over some popular DEMs covering large areas. We then review two possible 
fusion strategies, as well as methods for deriving point-wise accuracies/weights for the fusion process, since in most 
cases they are not supplied with the DEMs. In the last part of the paper we present experimental results for DEM fusion 
and a discussion of its benefits and limitations. 
 

1. INTRODUCTION 

Digital elevation models (DEMs) are one of the core products of photogrammetry and remote 
sensing, and one of the fundamental layers of geodata: they form the basis for orthophoto 
generation, mapping, and geo-visualisation, and they are a necessary ingredient for 3D planning and 
analysis in diverse application fields, including geology, hydrology, environmental modelling and 
urban planning. Furthermore, they are by their nature dense, thus airborne and satellite remote 
sensing are the only viable technologies to acquire large-area DEMs over large areas. This article is 
concerned with wide-area DEMs, by which we mean that they cover entire states or even 
continents. Such DEMs are usually supplied in the standard 2.5-dimensional raster representation. 
 
 In Section 2 we briefly repeat the main acquisition technologies for wide-area DEMs: matching of 
optical images, SAR interferometry, and airborne LiDAR. In Section 3 we give an overview and 
comparison of some popular wide-area DEMs. In Sections 4-5 review two methods for fusing 
DEMs from different data sources in order to obtain a new model with better accuracy and 
reliability. Section 6 is dedicated to an experimental evaluation of DEM fusion. 
 

2. ACQUISITION TECHNOLOGY 

The base data for DEM estimation are terrain points. Historically, these points were acquired 
manually through ground-based surveying or stereo measurement of contour lines or terrain points. 
These methods have now been superseded by less labour-intensive alternatives. Nowadays, there 
are three main technologies for acquiring 3D points over large areas. 
 
Automatic image matching is the direct successor of manual stereo-photogrammetric 
measurements. The technology is nowadays mature. Since the advent of digital cameras, image 
blocks are routinely recorded with large overlaps and thus high redundancy, which allows one to 
generate DEMs with an accuracy comparable to airborne LiDAR (Leberl et al. 2010). The main 
disadvantages of the technology is that it can only deliver DSMs, and that, being a passive 
technique, it cannot cope well with shadows and untextured regions. When applied to optical 
satellite imagery, automatic matching can cover very large areas, making it suitable for wide-area 
DEM generation – albeit often with lower reliability, because only two or three scans are available. 
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Synthetic Aperture Radar (SAR) interferometry is a widespread technology in satellite remote 
sensing. It has the important advantage that data acquisition is independent of daylight, and mostly 
also atmospheric conditions. Depending on the wavelength, SAR in principle allows to generate 
both DSMs (X- and C-bands) and DTMs (L- and P-bands), however most satellite sensors operate 
in the short wavelengths and deliver DSMs. Airborne SAR is less widespread, but has also been 
used to generate wide-area DEMs, employing usually X- or C- band and P-band. 
 
Airborne laser scanning has over the last decade become the dominant technology for smaller 
DEMs. The technology offers high density and accuracy with little processing overhead. A further 
advantage is that in vegetation areas the laser pulse partially penetrates the canopy, which allows 
one to acquire both a DSM and a DTM from the same sensor data. However, the technology is 
difficult to scale up to wide areas, because the costs for data capture increases considerably. At this 
point, LiDAR DEMs are not available for most of the world: complete coverage is only available 
for a few small countries like for example the Netherlands; for several other countries, especially in 
Europe, significant parts are covered (e.g. Switzerland, UK, Germany). 
 

3. WIDE-AREA DEMS 

In the following, we present important wide-area DEMs that are currently available, or may be 
available soon. DEMs which have been created by stitching together parts from different data 
sources (e.g. GTOPO30) are not discussed. Such DEMs generated by varying and time-wise 
different sources have very inhomogeneous data quality – essentially their properties in any given 
region are identical to those of the input used for that region. 
 
SRTM (Shuttle Radar Topography Mission) acquired DEMs in February 2000 by single-pass SAR 
interferometry in the C- and X-bands (Farr et al. 2007). Here, only the C-band will be treated (the 
X-band data has large gaps due to the limited strip width). Thee are several versions, with or 
without holes, patched with data from other sources, etc. Here we discuss the “classical” product. 
SRTM-C covers the landmasses between 60°N and 56°S, but has local holes. The grid spacing is 30 
m, but outside USA only a 90 m grid is publicly available. The specified accuracy is on the order of 
15-20 m (90% confidence interval, see Table 1), and empirically the data meets these specifications 
(Rodriguez et al. 2006). 
 
ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) GDEM was created 
from data acquired between 1999 and 2009 with stereo matching of image data in the visible and 
near-infrared range. It covers the landmasses between 83°N and 83°S at ~30 m grid spacing, with 
some small holes. The accuracy (95% confidence) is 20 m. Empirical valuations have shown that 
ASTER has somewhat inhomogeneous quality – while in most tiles the specifications (see Table 1) 
are met, there are regions with a significant amount of blunders as well as systematic artifacts 
(Reuter et al. 2009). 
 
Reference3D is produced by stereo matching of optical images from the French SPOT-5 satellite 
acquired since 2002. The DEM product currently covers large parts of Europe, Africa and Central 
America, and the coastal regions of China and Australia, as well as some smaller regions. However, 
data is available for almost the entire landmass of the earth, and can be expected to be processed in 
the future. Reference3D is delivered with ~30 m grid spacing. There are no holes in the available 
tiles. The accuracy is 10-30 m depending on the terrain slope, with relative accuracies about a factor 
two higher. These accuracies have been confirmed empirically (Bouillon et al. 2006). 
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NEXTmap. The company Intermap offers a DEM of the USA and Western Europe, acquired with 
airborne SAR interferometry. The DEM has a grid spacing of 5 m, and a nominal accuracy of 2 m 
for the planimetry and 1m for the height, which is reached in open terrain, but not necessarily in 
vegetation areas (Dowman et al. 2003). 
 
Other DEMs. Several other satellites not designed for DEM generation have nevertheless been 
used for that purpose. Examples include tandem interferometry with ERS-1 and ERS-2, and repeat-
pass interferometry with ALOS PALSAR. These projects have resulted in elevation models at the 
regional and national level (e.g. DEMs computed from ERS data exist for Switzerland, Czech 
Republic, the UK, Egypt, and possibly other countries), however there are no systematic efforts to 
create DEMs from this data, and the data coverage is patchy. High spatial resolution satellites have 
also been used for DEM generation using optical sensors, but due to data availability and costs only 
for rather small areas. 
 
Future projects. Several projects are currently underway to generate new, more precise wide-area 
DEMs. A notable example is the TanDEM-X mission, which uses a pair of X-band SAR satellites 
in close formation flight (Krieger et al. 2007). The mission is currently in its operational phase, and 
is expected, over the next 2.5 years, to cover all land masses of the earth at ~12 m grid spacing at an 
accuracy of about 10 m, but with relative accuracies <4 m. Another example is Microsoft’s Global 
Ortho project, which aims at creating high-quality orthophotos of the USA and Europe from 
airborne imagery. In the process, a DEM will be created by multi-image matching, which can be 
expected to be accurate enough for orthophoto production at 30 cm GSD. Specifications are not 
available, and it is not known whether a lower-resolution version might be released to the public. 
 
 SRTM-C ASTER GDEM Reference3D  Intermap TanDEM-X 
data capture 02/2000 1999-2009 Since 2002 Since 2004 2011-2013 
technology InSAR matching matching airborne InSAR inSAR 
coverage 60°N-56°S 83°N-83°S 30% land masses  USA, W-Europe all landmasses 
grid resolution 90 m / 30 m 30 m 30 m 5 m 12 m 
abs. Z-error @90% 16 m 17 m 10-30 m 1 m <10 m 
rel. Z-error@90% 10 m – 5-28 m 1 m <4 m 
abs. XY-error@90% 20 m 25 m 15 m 2 m <20 m 
rel. XY-error@90% 15 m – 8 m 2 m <3 m 
Cost free free ~10 US$ / km2 ~30 US$ / km2 unknown 

Table 1: Characteristics of important wide-area DEMs. 

 

4. DEM FUSION 

The overview emphasises that nowadays multiple DEMs of comparable accuracy exist already for 
almost any region of the earth. The situation gives rise to the natural question, whether this 
redundancy can be exploited to create a DEM of higher accuracy than any of the available ones. 
The optimal solution from the point of view of estimation theory would of course be to obtain the 
raw measurements and sensor models from all sensors, and fit a single DEM to the entire set of 
heterogeneous observations in one shot. Unfortunately this is usually not practically viable. A more 
realistic alternative is to fuse DEMs from different sources into a higher-quality product (and in the 
process estimate its quality from the redundancy). For completeness we point out that there is also 
an intermediate solution, namely to regard the existing DEMs as “raw measurements” of 3D points 
and fit a DEM to them. This approach however has the – at least conceptual – weakness that one 
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cannot know whether the employed fitting method is compatible with the one used to generate the 
input DEMs. 
 
Here, we concentrate on the real fusion case, i.e. the existing DEMs are regarded as (usually 2.5-
dimensional) non-parametric surfaces represented by samples on regular grids, and the goal is to 
obtain a new surface in the form of new height values for the denser one of the two grids. NB: 
filling the holes in a digital elevation model by stitching in data from another one is also sometimes 
called “fusion” in the literature, or at least seen as one step of fusion (e.g. Constantini et al. 2006, 
Rao et al. 2003, Slatton et al. 2002). Hole-filling is not investigated here, neither is mosaicking of 
DEMs to increase coverage, which is also sometimes referred to as “fusion”. 
 
The crucial technical difficulty of DEM fusion is that it requires weights to quantify the influence of 
the inputs at every surface location. These weights are a function of the relative height accuracy, 
and typically vary significantly across each DEM, due to the sensor technology, scene 
characteristics and method used to generate it (e.g. models based on SAR interferometry have larger 
errors in urban areas). These weights (sometimes referred to as “height error maps”) should be a 
natural by-product of DEM generation, but are nevertheless often not available, in which case one 
can try to estimate them statistically from local surface or scene properties. 
 
In the following, we briefly review two exemplary methods for DEM fusion, and present an 
empirical investigation of how to derive fusion weights from a given DEM. We then go on to 
experimentally evaluate DEM fusion for a test site in central Switzerland, and discuss the findings 
of that study. 
 
Preprocessing. Experience shows that systematic differences between the geo-referencing of two 
independent DEMs are the norm rather than the exception, both in planimetry and height. We 
therefore follow the common practice (e.g. Grün and Akca 2005, Constantini et al. 2006) and co-
register the two DEMs before fusion. We note that errors in height can in principle also result from 
different geoid corrections. This effect is not of relevance to the tests presented here, but may have 
to be taken into account when working over very large areas. 
 
DEM fusion by weighted averaging. Probably the most obvious fusion algorithm is to simply 
resample the two input DEMs to the same grid and compute an output value at each grid node by 
weighted averaging of the inputs. This approach is used frequently (e.g. Constantini et al. 2006, 
Reinartz et al. 2005, Schultz et al. 1999, Xu et al. 2010). In practice it works surprisingly well, 
which confirms the intuition that the correct choice of weights has a far greater influence on the 
results than the mathematical recipe for fusing the inputs. Its main weaknesses from an algorithmic 
point of view are on one hand that it looks at each grid point independently, disregarding the 
resulting surface shape; and on the other hand that the up-sampling of one of the input DEMs could 
potentially introduce further artefacts – which however is a largely theoretical concern with little 
practical relevance. 
 
DEM fusion with sparse representations. To mitigate the first weakness of weighted averaging, it 
has been proposed to exploit the framework of sparse representations for DEM fusion (Papasaika et 
al. 2011). In a nutshell, the rationale is the following: to be more robust to blunders it would be 
desirable to include prior knowledge about plausible surface shapes, such that improbable local 
surface geometries caused by blunders are suppressed. 
  
Such a fusion scheme can be designed by representing a local DEM patch as a sparse combination 
of basis patches, such that the basis can (theoretically) represent all local terrain shapes. The use of 
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patches instead of single height values, together with the sparsity constraint (i.e. only very few basis 
patches shall be combined to generate the output) regularises the output to probable surface shapes; 
generating the generic patch basis by down-sampling patches from a DEM with much higher grid 
spacing avoids sampling artefacts. The fused DEM is estimated by minimising the deviations from 
the two inputs while enforcing that both be represented by the same sparse combination of basis 
patches. It is well-known that sparsity of a linear combination can be achieved by minimising the 
L1-norm of the coefficient vector (e.g. Tibshirani 1996). Overall, the estimation thus amounts to 
solving a L1-regularised least-squares system, for which efficient solvers exist (e.g. Mallat 1998). 
 
Fusion weights. For both described methods (and most other conceivable fusion schemes) weights 
are required, which govern the relative influence of the two input DEMs at a given raster location. 
These weights are critical for proper DEM fusion. Under the simplifying assumption that there are 
no blunders, these weights can be derived by standard error propagation: it is easy to confirm that 
given two direct observations (z1, z2) with standard deviations (s1, s2), the weights for a weighted 
average are z=w1z1+w2z2 are w1=s2

2/(s1
2+s2

2) and w2=s1
2/(s1

2+s2
2). 

 
If such uncertainties si are indeed available for every single raster point (sometimes called “height 
error maps”, e.g.  Knöpfle et al. 1998, Reinartz et al. 2006), computing the weights is thus straight-
forward. Unfortunately, this is often not the case. In many cases only a global uncertainty for the 
entire DEM is reported, while local variations of the errors are lost. Simply using this global 
number everywhere is unsatisfactory, because the physical characteristics of different sensors, data 
acquisition conditions, processing methods and scene characteristics (especially geomorphology 
and land-cover) imply strongly varying accuracy. Some DEM providers take this into account in a 
crude fashion by reporting several standard deviations, e.g. for different classes of slope or land-
cover, e.g. vegetation and buildings. 
 
If adequate error measures are not provided, it is natural to ask whether the missing accuracies can 
be estimated directly from the DEM. To investigate this question we have analysed the residuals of 
different DEMs w.r.t. LiDAR ground truth. It turns out that in fact clear correlations exist between 
height errors and certain surface properties. In Figure 1 we show examples for surface roughness, 
surface slope, and aspect angle.  
 

 
(a) (b) (c) 

Figure 1: Relation between surface properties and DEM errors: (a) The errors grow with increasing terrain roughness for 
SRTM, whereas they initially decrease for ASTER – very low roughness typically means a lack of texture for image 

matching; (b) The errors of SPOT show a high correlation with the slope ; (c) SPOT flies over Switzerland around 10-
10.30am, so depending on the sun elevation its images have shadows on north slopes, leading to matching errors. 
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5. EXPERIMENTS 

Test site.  Our test site is located in the area of Thun in central Switzerland. It features a varied geo- 
morphology (small lakes, flat river valley, hills, steep mountain slopes), and variable land-cover 
(cropland, denser and sparser urban areas, forest, alpine rock and gravel). The site covers 
approximately 12 x 17.5 km2 with a height range of about 1600 m. 
 
Test data. Three different DEMs are available for pair-wise fusion, and one significantly more 
accurate one as ground truth. All DEMs were co-registered. No measures were taken to account for 
errors due to different acquisition times and different penetration depth of the sensor into the 
vegetation. 
 
SPOT Reference3D with 30 m grid spacing, produced by SpotImage by stereo matching of images 
(acquisition date 30.09.2002). The specified absolute elevation accuracy is 10 m for flat or rolling 
terrain (slope ≤20%), 18 m for hilly terrain (20% ≤ slope ≤ 40%), and 30 m for mountainous terrain 
(slope >40%). For our test site, the overall empirical accuracy (root mean square error w.r.t. ground 
truth) is 15 m. Since the specification is too coarse for DEM fusion, we estimated a per-point 
accuracy from the slope (see Papasaika et al. 2011). 
ALOS/PALSAR DEM with 15 m grid spacing, produced by sarmap S.A. by repeat-pass 
interferometry with the L-band sensor of the ALOS satellite (image acquisition date: master 
19.06.2006, slave 04.08.2006). The DEM comes with a full height accuracy map estimated from the 
signal coherence, which however in our experience is not always reliable. The overall empirical 
accuracy w.r.t ground truth is 20 m. 
ERS-1/2 Tandem DEM with 25 m grid spacing, also produced by sarmap S.A. by repeat-pass 
interferometry with the C-band sensors of the ERS-1 and ERS-2 satellites (several passes, 
acquisition 1995-1998). Again, a full height error map is supplied. The overall empirical accuracy 
w.r.t. ground truth is 11 m. 
 
As ground truth we use a LiDAR DEM provided by swisstopo, with 2 m grid spacing. The airborne 
LiDAR data was acquired in 2000 with a mean density of 1-2 point per m2 and with first and last 
pulse recorded. The specified accuracies (1 std. dev.) is 0.5 m in open country and 1.5 m in 
vegetation. 
 
Fusion ALOS – SPOT 
 
The fused DEM has a size of 800×1167 postings at a grid spacing of 15 m. Quantitative results are 
given in Table 2.The following values are given: the mean deviation (mean), in order to estimate the 
remaining bias in the co-registration, the familiar root mean square error (RMSE), the median 
absolute deviation from the median (MAD) as a robust measure of the accuracy without gross 
errors, and the maximum absolute deviation (ABSMAX) to quantify the size of the outliers. 
 
The fusion result corresponds to a 44% improvement over ALOS, while maintaining the resolution, 
respectively a 29% improvement over SPOT, while doubling the resolution to 15 m. Note, error 
propagation with the global RMSE of the inputs (19.4 m and 15.3 m) yields a theoretical expected 
RMSE for the output of 12.1 m, so using the proper weights does significantly improve the fusion. 
Figure 2(a) demonstrates the effect of DEM fusion with a qualitative example showing the 
reduction of blunders in the fused DEM. Figure 2(b) shows the errors histogram of the ALOS and 
SPOT DEMs as well as the fusion results with both weighted averaging and sparse representation. 
The analysis shows that the main improvement is due to the removal of gross errors. The fusion 
results have a similar distribution as SPOT below 50 m, i.e. fusion does not reduce small random 
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errors. However, both inputs contain a significant number of errors >50 m – ALOS has more 
blunders in total, but SPOT has a higher number of extremely high errors >200 m. Note, the y-axis 
is logarithmic to make the plot more readable. Figure 2(c) shows how the error distribution changes 
due to the fusion, compared to the more accurate input SPOT. The x-axis shows the error difference 
(errfused - errSPOT), between the absolute height errors, so negative values mean that fusion brought 
an improvement. The overall distribution is significantly skewed towards negative values, meaning 
that the heights of many more points were improved than deteriorated by the fusion process. 
 
 MEAN RMSE MAD ABSMAX 
ALOS -1.0 19.3 6.6 280.6 
SPOT -1.6 15.4 4.4 349.1 
Weighted avg. -1.0 10.9 4.1 202.8 
Sparse rep. -1.0 10.9 4.2 205.1 

Table 2: Results of fusing the ALOS and SPOT DEMs. All errors are measured w.r.t. the LiDAR data as ground truth. 
All values are in (m). 

 

(a) (b) (c) 

Figure 2: Results of fusing the ALOS and SPOT DEMs. (a) Example how fusion reduces gross errors – note, deviations 
from ground truth range from -200 m to 150 m; (b) histogram of absolute errors of different DEMs); (c) differences 

between the absolute residuals of fused DEM and SPOT DEM (negative values mean fused is better). 

 
A comparison of the weighted average and sparse representation methods shows that overall their 
performance is very similar – the regularisation built into the sparse representation framework does 
not seem to make a big difference, see Figure 2(b). This is in agreement with the intuition that the 
crucial factor is not the mathematical recipe for fusion, but rather the correct determination of the 
fusion weights (respectively relative accuracies). However, the two methods do behave differently. 
Compared to the more accurate input SPOT, weighted averaging changes fewer points, i.e. more of 
the output is identical to the SPOT DEM – see Figure 3(a). On the contrary, the sparse 
representation method is more aggressive and deviates from SPOT more often when using the 
identical weights, but not always to the better. More errors are reduced, but also more are 
aggravated. Putatively, this is due to the additional constraints on the terrain shape imposed by the 
regularisation. A further observation is that weighted averaging, although on average staying closer 
to SPOT, makes the bigger mistakes – it increases noticeably more height errors than the sparse 
representation method. We point out that the experience with the sparse representation method is 
preliminary and more research is needed how to optimally adapt it to the fusion problem. 
 
Finally we also note that the influence of DEM fusion depends on the local characteristics of the 
terrain. In our experience, larger improvements are made in areas of high slope and high roughness, 
which is not too surprising, since the inputs tend to be more inaccurate in these regions. 
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Fusion ERS-SPOT 
 
The fused DEM has a size of 480×700 postings at a grid spacing of 25 m. Quantitative results are 
given in Table 3. The fusion result corresponds to a 37% improvement over SPOT, while increasing 
the resolution from 30 to 25 m, respectively an 11% improvement over ERS, at the same resolution. 
Error propagation with the global accuracies of the inputs leads to a theoretical expected RMSE of 
8.8 m, which is not reached – most likely due to inaccurate weights. 
 

 

(a) (b) 

Figure 3: Comparison between weighted averaging and sparse representation. (a) The sparse representation method 
more aggressively changes height values. Weighted averaging improves fewer points, but also makes fewer mistakes; 
(b) detail from the plot of changes w.r.t. SPOT, c.f. Figure 2(b); generally both methods perform similarly, however 

weighted averaging exhibits a tendency towards big mistakes, where the error increases by >30 m. 

 
Figure 4(a) demonstrates the effect of DEM fusion on a qualitative example. Figure 4(b) shows the 
histogram of the errors of the ERS and SPOT DEMs as well as the fusion result. The main 
improvement again comes from removing gross errors >50 m. Note, the y-axis is again logarithmic. 
Figure 4(c) shows how the errors change due to the fusion, compared to the more accurate input 
ERS. The heights of many more points were improved than deteriorated by the fusion process. 
There is practically no difference between the two fusion algorithms, although weighted averaging 
still has a slight tendency to greatly increase the error for a small number of points. 
  
 MEAN RMSE MAD ABSMAX 
ERS 0.1 10.8 3.1 144.6 
SPOT -1.6 15.3 4.5 345.3 
Weighted avg. -1.1 9.6 2.7 131.4 
Sparse rep. -1.1 9.6 2.7 131.3 

Table 3: Results of fusing the ERS and SPOT DEMs. All errors are measured w.r.t. the LiDAR data as ground truth.  
All values are in (m). 

 

% DEM points
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(a) (b) (c) 

Figure 4: Results of fusing the ERS and SPOT DEMs. (a) Example how fusion reduces gross errors; (b) histogram of 
absolute errors of different DEMs; (c) differences between the absolute residuals of fused DEM and ERS DEM 

(negative values mean fused is better). 

 
Fusion ALOS – ERS 
 
The fused DEM has a size of 800×1167 postings at a grid spacing of 15 m. This experiment shall 
illustrate the limits of DEM fusion. Firstly, the two inputs have very different accuracy (almost a 
factor of 2), and secondly they have both been generated with the same technology (interferometric 
SAR), such that we expect them to be less complementary. The quantitative results in Table 4 show 
that fusion does not improve the ERS data significantly. Error propagation with the global 
accuracies of the inputs leads to a theoretical expected RMSE of 9.4 m, which is not reached. A 
closer analysis reveals that even in areas of high slope or roughness, where the ERS DEM is known 
to contain some blunders, the fused DEM did not improved at all, meaning that ALOS can not 
contribute any useful extra information. Figure 5(a) shows the error maps for both input and the 
fused DEM – the output is essentially identical to ERS. The quantitative analysis in Figure 5(b) 
further confirms that weighted averaging almost does not change the input, and the sparse 
representation approach only alters <10% of all grid points, without making an improvement. 
 
 MEAN RMSE MAD ABSMAX 
ALOS -1.0 19.3 6.6 280.6 
ERS 0.1 10.8 3.1 159.2 
Weighted avg. 0.1 10.7 3.1 159.3 
Sparse rep. 0.1 10.7 3.1 156.8 

Table 4: Results of fusing the ALOS and ERS DEMs. All errors are measured w.r.t. the LiDAR data as ground truth. 
All values are in (m). 

 
 

fusedERSSPOT
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(a) (b) 

Figure 5: Fusion of ALOS and ERS DEMs. (a) No improvement is possible, the output is practically identical to the 
more accurate input ERS over the entire test site; (b) the quantitative analysis confirms that ERS prevails almost 

unchanged. 

 

6. DISCUSSION 

Chances. The experiments confirm that significant improvements are possible by fusion of existing 
DEMs – in the ALOS+SPOT case the RMSE was reduced by 29% compared to the more accurate 
input. Most of the gain is due to the reduction of gross errors, of which there are quite many in 
large-area DEMs. The combination of complementary DEM generation technologies, such as for 
example interferometric SAR and optical image matching, has the biggest potential, because the 
different recording and processing principles introduce different blunders, which can be at least 
partially remedied with more correct data from the other technique.  
 
Although different fusion algorithms are available, the choice which mathematical toolbox to 
employ makes little difference. More important is to use the correct influence weights for the 
inputs. Fusion requires fine-grained knowledge of the local uncertainty to determine the appropriate 
fusion weights. If these are not supplied together with a DEM, it is nevertheless feasible to 
determine them from local geomorphological characteristics and land-cover.  
 
Limits. Models generated with similar technology and/or very different accuracy are less suitable 
for fusion, since they tend to contain blunders in the same areas, and the weaker DEM will not be 
able to contribute any important information. Furthermore, one needs to be aware that even in the 
case of successful fusion, the errors are increased for some points. 
 
Regarding the data-driven estimation of fusion weights, the method requires access to training data 
consisting of both estimated heights and residuals, thus it can only be done if DEM data as well as 
sufficiently accurate ground truth is available, such that the dependency between surface properties 
and height uncertainties can be estimated for the specific DEM generation technology. 
 
Open questions. Here, we have only investigated the fusion of two input DEMs. While the 
described methods can trivially be extended to more inputs, an empirical investigation is still 
missing. The use of more than two DEMs can also support blunder detection. A further interesting 
domain is the fusion of airborne photogrammetry and airborne LiDAR, which could potentially be 
useful for high-accuracy applications. The methods we have investigated are generic, but again the 
application to high-density airborne data remains to be verified experimentally. 

fusedALOS ERS

% DEM points
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So far we have only looked at the statistics of height errors w.r.t ground truth, an error measure that 
is independent of any particular application. For certain problems, DEM quality may not be 
primarily the per-point uncertainty, e.g. for hydrological applications it may be more important to 
correctly delineate watersheds, even at the cost of higher overall errors. We have not investigated 
this issue yet, and at least in principle it is quite possible that altering heights to reduce their 
individual residuals significantly changes gradient directions and thus run-off patterns, especially in 
flat regions. 
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