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ABSTRACT 

 
The starting point for the modeling of urban spaces was in the mid-1990s, using semi-manual aerial stereo-
photogrammetric methods, also multi-view street-level image streams and at times also single images. First tangible 
applications of such 3D models were found in the late 1990’s in the telecom-industry for the study of signal propagation 
of cellular and other telecommunication technologies. We now find ourselves ten years later in an evolution of Internet-
search where location is both an important search criterion as well as a helpful means of visualizing search results. The 
Internet is becoming “location-aware”. “Visualization” poses great demands on the “user-experience” to make the 
Internet-locations appear photorealistic and to present the human environment at great detail. Location initially was 2D, 
but since 2006 encompasses the 3rd dimension in various forms. While this initially is being addressed with a focus on 
visually pleasing photo-textures, it is rapidly evident that the applications depend on an interpretation of the urban 
scenes with knowledge of roads, sidewalks, trees, doors, windows, parking meters, sky lights etc.  We therefore are 
investigating technologies and algorithms to automatically describe the urban environment in sufficient detail so that we 
can generate a pleasing visualization and understand the relevant objects in the scene. In this paper we show initial 
results using aerial photography as the main data input to find roads, green areas, trees, water bodies and buildings. 
Success rates are in the range of 90%, with a potential for improvements by increased image overlaps and 
computational methods.  
 

1. JUSTIFICATION 

Semantically interpreted 3D models of urban spaces would support interaction, search and 
navigation based on the elements of a city, be they windows, sidewalks, chimneys, number of 
floors, garages, manholes and the likes, just as we today search and navigate in alphanumeric text 
by means of words and their meaning. However, this needs a transition from the traditional off-line 
(passive) use of 3D data, as in the example of computing the cellular telephone signal propagation, 
towards interpreted urban models.   
 
Urban 3D models have an approximately 15-year history, the beginnings perhaps marked by early 
workshops at Ascona (GRÜN, 1995; GRÜN, 1997). Providers of 2D Geographic Information 
Systems (GIS) of urban areas became interested in a 3D version of the GIS as the 2D data 
processing systems matured by the mid-1990s and new technologies began to make the use of and 
interaction with 3D data feasible and easy. No particular application stood out to dominate the 
specifications for 3D GIS. Fig. 1 is a typical 3D model used for wireless data transmission and 
signal propagation studies, an important application of such data since about 1998, requiring fairly 
generalized models of buildings or building blocks. Meanwhile, however, the developments have 
accelerated and 3D models of urban spaces are becoming ubiquitous, especially as an academic 
research field, as part of fully digital workflows in photogrammetry, and as application 
opportunities have evolved, for example in 3D car navigation (STRASSENBURG-KLECIAK, 
2007). 

1.1. Towards the Virtual City 

In its simplest form, the “Virtual City” is a digital surface model (DSM) of the urban landscape with 
aerial photography draped over the DSM, and presented on a computer monitor for display and 
some limited interaction. In its most sophisticated form, each building, tree, street detail, bridge and 
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water body is modeled in three dimensions, details such as windows, doors, facade elements, 
sidewalks, manholes, parking meters, suspended wires, street signs etc. exist as separate objects. 
The detail is sufficiently complete with albedo, color and surface roughness for a photo-realistic 
visualization in a 3D immersive virtual reality environment.  
 
When we refer to a state-of-the-art, we address the ability of creating models automatically and 
economically. A manual creation has been feasible since a long time and in fact was at the root of 
inventing early applications of photogrammetry in the late 19th century (architectural 
photogrammetry, GRIMM, 2007). That manual capability has evolved into a semi-manual approach 
to map landmarks (STRASSENBURG-KLECIAK, 2007).  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Today’s automated abilities are well beyond the photo-draped point clouds of urban spaces, but are 
yet far from this vision of a fully interpreted model. We find today an intermediate solution with the 
bald Earth and its vertical objects separately modeled, but with rather simple plane surfaces for 
building shapes, without any interpretation of the details and with total reliance for the rendering on 
photographic texture. Only the vegetation gets classified and is being rendered separately. An 
example of this state-of-the-art is the Microsoft system http://www.bing.com/maps (formerly 
Virtual Earth, Leberl, 2009). One can today associate alphanumeric meta-data with entire buildings 
and individual trees, not, however, with individual building floors, doors or windows (see Fig. 2).  
 
 

 

 
Of course, the aerial image is not the only source for such models. Satellite imagery may offer some 
appeal, but generally is of insufficient geometric resolution and with inappropriate overlaps to serve 
as a workhorse for 3D urban models. Instead, there is frequent use being made of airborne laser 
scanning to directly collect the geometric surface shapes rather than to compute those shapes from 

Fig. 1: 3D building models of Vancouver created at Vexcel Corporation (Boulder, USA) in 1998 for use in telecom 
signal propagation studies. Embedded is an example of the buildings placed on top of the digital surface model. 

Fig. 2: A state-of-the-art automated urban model with building and terrain model as separate objects (© Microsoft). 
The object shown is the Colorado Capitol in Denver, USA. 



Leberl et al.  253  

overlapping imagery.  And as most applications of such models require a focus on the human scale, 
one is investing in data acquisition from the street level, also using imagery and laser scanners 
carried on the roof of cars.  
 
A german initiative since about 2002 deals with standards based on a mark-up-language CityGML 
and describes the “Virtual City” by five levels, starting from a “Level-of-Detail-0/LOD-0” of the 
digital terrain model (DTM) or also known as the bald Earth. LOD-1 is the simple rectangular 
model of buildings and city blocks without any attention to photographic realism (see Fig. 1). This 
gets improved by a “LOD-2” with building blocks showing generalized roof shapes. “LOD-3” is the 
photorealistic full model of each building (Fig. 2), LOD-4 contains sufficient detail to enter a 
building (http://www.citygml.org; NICKLAS, 2007; WILLKOMM, 2009). 
 
Perhaps one should extend this classification to go beyond the buildings and focus on the many 
human scale details of urban spaces such as sidewalks, vegetation, manholes, street signs etc. Such 
details will be contributed from street-side and even indoor sensor data. And one may well expect 
that it will be this level of the “Virtual City” that will in the end fulfill the expectations for a wide 
range of applications on the Internet and elsewhere.  

1.2. Two-Dimensional versus Three-Dimensional 

To map-makers, the transition from two dimensions to the third is straight forward and 
unambiguous. The 2D GIS represents a plane into which the 3D world is projected. This may 
contain the third dimension as an attribute, perhaps describing the height of a building much like a 
color or address. Obviously then, the 3D GIS will be an XYZ-model of the environment with 
attributes associated with certain 3D objects. For the purpose of this discussion, we neglect the 
(very important) difference between fully three dimensions and the often denoted 2.5 dimensions 
associating with any position in the plane XY only a single Z-coordinate. To visualize an urban 
space in an Internet application, one needs to transfer to the user’s client the XYZ-coordinates of 
objects and create a rendering for the user in 3D, or such renderings are being produced centrally 
and sent to the user.  
 
However, we can define a hybrid that does not operate with any 3D models of urban scenes. In 
computer graphics, one can simulate a 3D rendering by only using 2D data. Recent examples are 
Photosynth (AGÜERA Y ARCAS, 2007) and Photo-Tourism (SNAVELYS, 2006).  The user’s 
position is defined in a 3D space, as is the user’s viewing direction and view frustum. But the user 
is at all times viewing 2D images taken of the entire hemisphere (or sphere). Google Corporation 
uses this approach in its street side imagery.  At each of a discrete set of street positions, a set of 2D 
images will be collected. Viewing is supported by changes from image to image depending on the 
viewing direction of the user. This may sometimes be denoted as “Bubble viewing” or “Viewing in 
a Box”. The basic concept may have been inspired by the work done to interactively control the 
viewing position when viewing video streams (ZITNICK, 2004).  
 
The advantages of the hybrid 3D viewing via 2D images are obvious: no need for the creation of 3D 
models, 3D data structures, transfer of 3D models in the web to a user’s client, no visualization of 
3D content by a projection onto a 2D viewer.  The 2D images serve as “pre-computed” 3D 
renderings for easy presentation to the user. The client does not have to process complex 3D data on 
a high performance graphics card. 
 
The disadvantages are obvious as well. Relationships between data sources cannot be made smooth, 
one just is viewing images, there is no interpretation of the image’s contents, the illumination is 
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frozen, and the change of a user’s positions does compromise the realism of the images that were 
collected from another position.   
 
In our opinion, the “simulated 3D” by series of 2D images is a transitional phenomenon that will 
pass as automation of 3D models improves. 

1.3 From Virtual Cities towards Virtual Habitats 

Microsoft called its 3D internet system Virtual Earth (now http://www.bing.com/maps), obviously 
inspired by the large Earth with its thousands of cities, each one seen as a bird would. A “Virtual 
City” then appears as a logical part of this “Virtual Earth”.  
 
However, one easily forgets the human scale with its experience of walking, sitting, looking, doing 
sports, recreating, shopping and consuming. This is broader than “the Earth” or “the city”. It 
addresses the street side, the interiors of buildings with their rooms, perhaps objects inside rooms 
such as art or merchandise, and it includes recreation areas with mountains, golf courses, bike paths, 
children’s play grounds etc. While the ambition is to be relevant across the entire Earth, the 
relevance is to the humans.  Therefore we propose to talk about the “Virtual Habitat” as a more 
general concept than the “Virtual Earth” or the “Virtual City”.  
 
Associated with this specification of the human scale are the detail of the data base and the detail 
available from sensors. Satellite, aerial photography or LiDAR scanning, if applicable, may be the 
source at a level of detail in the range of 10cm to 15cm. Street-side sensors would augment that 
detail at a level of perhaps 2cm, in order to represent signs and text on facades and shops. As one 
moves indoors, the detail will further increase to a level of perhaps 0.5cm to represent various 
objects. An example may be museums or religious places, and the inside of shops.  
 

2. DATA 

2.1 Aerial Imagery, either Vertical or Oblique 

The initial emphasis in the creation of virtual cities was put on satellite and aerial photography. Use 
was and is being made of this material in the form of ortho-photos at geometric resolutions that 
were most economical; and in the form of 3D models of buildings. The ortho-photos were thus used 
as a background of a digital Earth model, but for economic reasons were oftentimes not specifically 
created but simply re-used from existing sources. Geometric resolutions in the range of 1 m per 
pixel were acceptable while of course pixel sizes in the range of 2 cm would be more appealing. 
 
Satellite imagery offers pixels of up to about 50cm; these are very useful sources for ortho-photos, 
but the creation of 3D models is first being obstructed by an insufficient resolution, and secondly by 
an insufficient redundancy for 3D reconstruction.   The typical pixel size for buildings today is at 12 
to 15 cm. With the inclusion of an infrared color one uses four color bands and in the process 
improves one’s ability to deal with vegetation. One uses ten images per building for 3D 
reconstruction. 
 
An interesting phenomenon was the advent of oblique aerial photography to have a quick 3D view 
of buildings without having to construct a model of buildings. While oblique imaging has had a 
long tradition in aerial mapping to overcome the optical limitation of wide-angle views, its 
substitute for 3D models is a result of the application of urban mapping to the Internet. Fig. 3 
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illustrates two oblique views of the same area, once imaged by a tilted aerial camera, the other using 
the oblique view inherent in the wide viewing angle of a vertical aerial photograph.  
 
 

 

2.2 Aerial Laser Point Clouds 

Since perhaps the mid-1990’s the aerial laser scanners (LiDAR) have become a very prominent 
source for digital terrain models, much to the detriment of further innovation in stereo 
photogrammetry. The aerial laser scanners produce point clouds that then need to be analyzed and 
converted to a 3D model of the bald Earth and of the vertical objects on top of the bald Earth. 
 
While aerial photography collects data in rather wide swathes, the laser scanners cover much 
smaller swathes and at lower air speeds. This gives the photography seemingly a large productivity 
advantage. However, the laser requires a limited level of post-processing whereas photography 
needs to be fed into an elaborate photogrammetric processing workflow. However, with such 
workflows being highly automated, that factor is of reduced importance (LEBERL, 2009b). 
2.3 Street Side Imagery and Street Side Lasers 
 
It is a reflection of the interest in the human scale that recent innovations do address the street-side, 
both by way of street side photography as well as by scanning lasers producing point clouds. 
Systems collect typically both camera images (taken in all directions to produce a hemi-sphere) and 
laser scans, and this gets done at intervals from a moving vehicle such that perhaps every 4m or so a 
new data set is acquired. This obviously will produce many images of a specific object point and 
helps to fill in occlusions. The laser point clouds are meant to replace the need for information 
extraction from the images. Fig. 4 is a snapshot of street side imaging systems of Google being 
transported between Austria and Germany, and a view taken from such a system in Boulder, USA.  
 

 

 

Fig. 3: View of facades, once from a tilted aerial camera (left), once from vertical aerial imagery (Microsoft 
UltraCam), but taken from the edge of such photographs. 

Fig. 4: Left: Snapshot of a Google systems for street side imaging as they are being transported on a german freeway.  
Right: Google Street-View of a house in Boulder, USA. 
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3. THREE DIMENSIONAL VISION 

3.1 Triangulation 

Both aerial as well as street side imagery needs to be placed into a world coordinate system. Global 
Positioning Systems (GPS) and Inertial Measuring Units (IMU) may not be sufficiently accurate, 
especially when the 3D shapes get reconstructed from overlapping images or if objects must be 
recognized in multiple images. In both cases one will benefit from sub-pixel matches of overlapping 
images. In aerial photography this will be in the range of a few centimeters, in street-side it will be 
at the centimeter- level. 
 
The approach is via image triangulation using thousands of automatically collected tie points in any 
image overlap.  This is a task of limited complexity when the image taking is in a very organized 
fashion, as is the case in aerial mapping. The same task becomes very difficult if one deals with 
amateur photography taken from any arbitrary position and into any direction, perhaps even without 
a well defined focal length, without any auxiliary GPS data, let alone any inertial direction 
information, as is typical of the Photosynth system (AGYERA Y ARCAS, 2007). 

3.2 Dense Matching 

Triangulation will typically compute the 3D coordinates of all tie points, resulting perhaps in 
several hundred points per photo. This does represent a “sparse point cloud” of the object. Dense 
matching builds on this sparse data set and densifies it to a level of a 3D point at intervals of 2 
pixels or so.  Per photograph one might obtain several million object points.  
 
Dense matching employs all images taken of an object, and computes precise matches among the 
images so that from each image one obtains a geometric ray between image and object point. The 
object point gets intersected from these multiple rays. A common approach is to extract from the 
images a triplet and to compute a point cloud per triplet. Since many triplets can be formed, many 
point clouds will be computed. These then must get merged into a single seamless representation of 
the object by a fusion process. 

3.3 DSM and DEM (Bald Earth and Vertical Objects) 

The dense point cloud is an un-interpreted representation of the object surface. If this is the terrain, 
then we want to separate the points into those that describe the terrain surface and those that 
represent the buildings and vegetation. That separation can be based on image segmentation where 
the building roofs, the vegetation, the grass surfaces and circulation spaces get identified. Elevation 
above ground also is a factor entering into a process that results in a separate DTM and a DSM 
which comes from the points closest to the sensor, thus the aerial camera. Subtracting the DTM 
from the DSM will deliver the relative height information of the objects, which can be used as a 
discriminative feature modality for e.g. a semantic image classification task.  
 
Fig. 5 shows a color image and relative pixel-synchronous heights, computed by using similar 
methods as proposed in (KLAUS, 2006) and (CHAMPION, 2006). For each pixel in the color 
image, a corresponding height value is extracted and directly used as additional information source.  
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4. SEMANTIC SCENE INTERPRETATION 

We argued previously that the early work for VR Cities (which focused on photorealistic shapes of 
urban landscapes) is now being improved to create complete models of all the objects making up 
the urban landscape on a human scale. A visualization of an urban scene will then be created from 
the complete description of its elements. To get there, we need to detect and describe the objects 
based on color, texture, height etc. Here, we highlight two approaches to get towards a full semantic 
scene interpretation.  
 
First, we use a car detection procedure for multiple reasons. Objects, like cars, are irrelevant for the 
virtual modeling of scenes since they are not a permanent feature of the terrain. Therefore, a 
detection mask is being used to provide information about image regions that are irrelevant for the 
3D modeling. On the other hand, the car detections can be exploited as context knowledge in a later 
processing step e.g. to distinguish between parking lot areas and driving surface.  Second, we 
illustrate an efficient approach for full semantic classification based on randomized forests by 
integrating appearance and height information. 

4.1 Car Detection  

The car detection problem in the aerial images is treated as a binary classification problem – with 
either an object being a “car” or “background”. To automate such a search one would traditionally 
need a large number of pre-labeled data, perhaps in the order of ten-thousand images. However 
since we have an on-line learning method (GRABNER, 2006), which is sufficiently fast for 
interactive work, we deal with the training as an interactive learning problem. The key idea is that 
the user has to label only those examples that are not correctly classified by the current classifier. 
We evaluate the current classifier on an image. The human supervisor labels informative samples, 
e.g. marks a wrongly labeled example which can either be a false detection or a missed car. The 
new updated classifier gets applied again on the same image or on a new image, and the process 
continues iteratively until a satisfactory detection performance is achieved. After training, the 
overall detection results from the exhaustive application of the trained classifier on the images.  
 
The details of this approach are described in (NGUYEN, 2007; LEBERL, 2008). See Fig. 6 for a 
car detection result on a scene extracted from the dataset Graz, Austria. A quantitative evaluation on 
hand-labeled ground truth images gives a detection rate of approximately 85% with a false positive 
rate of 15%. Future work will employ more information than just a single color image. 
 

Fig. 5: A segment of an aerial color image of Graz, Austria and the corresponding relative height information, which is 
used as a discriminative feature channel. 
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4.2 Semantic Aerial Image Classification 

A semantic classification is being achieved by means of segmentation of individual images, and 
then refining that segmentation by consideration of the results from overlapping images. In the 
following sections we highlight an efficient technique obtaining a semantic large-scale 
interpretation of aerial imageries, for use in virtual modeling urban environments. The classification 
pipeline is mainly based on previous work presented in (KLUCKNER, 2009). The work 
investigates an approach to compactly integrate various feature channels by using the powerful 
covariance descriptors (PORIKLI, 2006) within randomized forests (BREIMAN, 2001). We 
showed in (KLUCKNER, 2009) that this concept obtains competitive results, compared to state-of-
the-art classification methods (SHOTTON, 2008; SCHROFF, 2008), on a standard evaluation 
dataset like the Microsoft Research Cambridge (MSRC) image collection.  
The suggested method provides several advantages that are exploited for large-scale computations 
in aerial imagery: (a) Randomized forests have proven to give robust and accurate results in 
challenging multi-class classification tasks (SHOTTON, 2008 and SCHROFF, 2008). The forests as 
classifiers are very efficient at runtime since the concept is based on fast binary decisions between a 
small number of selected feature attributes. (b) The classifier can be trained on a large amount of 
data, avoids over fitting and can handle some label noise (errors in the training data), which is 
appropriate in case of generating large-scale training maps. (c) Since the aerial imagery consists of 
multiple information sources, such as color, infrared, range and panchromatic data, there is a need 
to reasonably combine these feature cues. We therefore use a feature representation based on 
covariance descriptors to compactly describe the channels including a small local neighborhood.  
(d) In addition, as proposed in (PORIKLI, 2006), these descriptors can be quickly computed using 
integral image structures and support parallel computation techniques.  
 
Exploiting these advantages and extending the work presented in (KLUCKNER, 2009), we apply 
the concept based on randomized forests with a covariance feature representation to perform a 
semantic classification in challenging real world aerial images. To obtain results in terms of 
correctly classified pixels, we manually label maps that provide the ground truth information for 
training and testing. Fig. 7 presents the semantic classification at the pixel level of an aerial image 
segment for the classes “building”, “tree”, “green area”, “road”, and “water body” using an 
integration of color, texture and height information.  
 
A single image can be processed within two minutes at a full resolution of 11.500x7.500 pixels. 
Moreover, the evaluation procedure considering the labeled ground truth data reports an average 

Fig. 6: The resulting car detection is being superimposed on an aerial image of Graz, Austria. 
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rate of approx. 90% classification accuracy. A similar approach and more results of an extensive 
evaluation are currently under peer-review for a major computer vision conference. 
 
 Building

Road

Green Area

Tree

Waterbody  

 
Since our classification pipeline yields a semantic interpretation for each image in the dataset, we 
obtain highly redundant observations from different viewpoints for each pixel on the ground. By 
exploiting the available range data and camera parameters, the obtained per-image classification 
results are fused into an ortho-view image that includes a semantic interpretation of the full scene 
that is then directly used to construct the virtual 3D model. The fusion step simultaneously results in 
robust height information, including the DTM and the DSM data and certainly the color image.  
 
 

 
Since the fused semantic classification is so far provided on pixel level, we apply an efficient 
technique based on conditional random fields (KOMODAKIS, 2007) to obtain a smooth final class 
labeling by integrating spatial neighborhood information. A quantitative investigation how a large-
scale fusion of multiple per-image results influences the overall classification accuracy is part of 
current research; however we obtain promising visual results. Fig. 8 depicts a fused large scale 
classification and the corresponding color image. The result is computed within two hours on a 
standard PC and consists of the information of 56 single full resolution aerial images. 

4.3 Towards Virtual Modeling 

Taking into account the computed 2D semantic interpretation, we can construct a (yet simplistic) 
3D model by additionally considering the available 3D height information. According to the 
obtained interpretation, specific processing steps yield a full virtual scene as shown in Fig. 9. 
Moreover, we use the predictions for the class “road” to automatically compute a full street-layer 
network, represented as an efficient graph data structure. Such graph provides important 
information for e.g. navigation, rendering of scenes, etc. 
 

Fig. 7: Aerial color image segment and the resulting semantic classification on a pixel level by integrating color, 
texture and elevation. The classes are “building”, “tree”, “green area”, “road”, and “water body”. 

Fig. 8: The resulting large-scale classification using our fusion pipeline - the computed semantic interpretation results 
integrates 56 images.  
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5. APPLICATION 

5.1 Computer-Generated Photorealism From 3d Models 

Our interest in urban spaces is partly driven by the use of those spaces in Internet-applications. This 
recognizes the “user” of urban data as someone who is initially seeking a satisfying visual 
experience on the Internet. This very much drives the desire for photorealism for all 2D and 3D data 
used on the Internet.  While this is the current state-of-the-art, we can see already that down the 
road the user will want to search through the urban data.  
 
While initial photographic texture would be expected to capture shadows and sun illumination, or 
rain, in a specific way just for a given moment, we expect computer generated realism to render for 
any illumination, any sun angle, any weather or perhaps even any season. 
 
Apart from this added flexibility, there is an advantage of smaller data quantities that need to be 
stored, retrieved and transmitted to a user.  
 
Finally, creating the rendering from object models supports the idea of user-supportive 
generalization. Objects of importance such as schools can be visualized to a user at a level of detail 
and scale that differs from other objects of lesser importance to that user and the application. 

5.2 Search 

The look for information about any topic on the Internet has become the most dynamic 
development in the history of mankind. While software became a well-defined and separate 
industry over a time span of 30 years, starting in the mid-1970’s, the search for information on the 
Internet has grown into a full-blown industry in a period of perhaps only five years. This reflects the 
human’s hunger for information and knowledge. 
 
Having the search associated with a location makes eminent sense. This can be because the user is 
looking for a location or for directions, or because there is a decision pending on which location to 
choose from a potentially very large choice, or because there is a location-reference to a place in 
another context. Is something nearest to something, or the most elegant, or the largest, or does it 
serve a specific purpose in lieu of a more general orientation, etc?  
 
As search continues to grow in importance and becomes continually more sophisticated, its location 
data also will need to grow in flexibility and versatility, thus in the usefulness to as many different 
applications as possible. Why not clicking on a window and learning whatever the Internet holds 
about the goings on behind that window? 

Fig. 9: A virtual 3D model of the center of Graz, Austria is generated by taking into account the semantic classification  
and the available 3D height information. The model on the left presents the raw DTM and the class “tree”, each tree 

being modeled as an individual point cloud. The right model includes the extracted building blocks, assigning to each 
block a mean color and height. 
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5.3 Navigation 

Car navigation has become ubiquitous, and anyone traveling in unfamiliar areas will attest to a 
growing dependence on the electronic navigation aid.  
Strassenburg-Kleciak (STRASSENBURG-KLECIAK, 2007) expressed that 3D car navigation 
could be a reality, were it not for the absence of large area 3D urban models. Personal navigation 
via the smart phone will follow. If there are any ambiguities in navigation, then it results from a 
lack of realism of the map, or from its generalization and lack of detail. Navigation will thus benefit 
from a more detailed, 3D model of the world and the human habitat. This justifies a transition from 
current symbolized street maps to realistic 3D models.  

5.4 Others 

Willkomm (WILLKOMM, 2009) presents an interesting overview of commercially viable 
applications for 3D urban data. Games, e-commerce, the Internet-of-things, ambient living all are 
additional applications for the “Virtual Habitat”. Real estate today can practically no longer be 
rented or sold without a presence in the web. This may not necessarily be using 3D; we already 
pointed to the simulation of 3D by series of 2D images.  
Games may drift from invented, non-existing locales to actual neighborhoods modeled digitally. 
This represents a soft need for VR cities. 
 
The Internet-of-Things associates with each object an Internet-visible radio-identification. This in 
turn needs a location to be obtained for such objects. If we describe the location of an object, we 
need a description of the object’s position and possibly attitude. A wallet is visible when we know 
that it is on top of a table in a specific room inside a known building. In analogy, ambient living is 
built on a model of the living space of a person (for example is a person in a bed in a room in a 
building). 
 

6. OUTLOOK  

At issue is the transition from the mere visual focus of shapes dressed up with photographic texture 
towards a model of the parts an object is composed of, with material properties and an interpretation 
of an object’s function. 
 
The transition will lead to a totally different visualization of and interaction with objects and 
cityscapes. A “Virtual City” will get shown as a computer-generated view of its parts, built bottom-
up. Searches can address buildings by properties such as height, floors and other characteristics. 
Searches can concern objects in a city’s streets such as parking meters, sidewalks, bicycle stands, 
man holes. 
 
The work towards a fully interpreted “Virtual City” has only just begun – we are at the beginning of 
a long journey. That journey consists  
 of technology developments to convert sensor data into urban models and into interpretations 

of these model’s contents,  
 of the actual creation of the models of thousands of cities,  
 of means to update and keep current what has previously been created,  
 of ways to involve the large community of users in providing sensor data, in flagging of errors 

and in correcting the errors in the  “Virtual City” creation.   
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