

Visual SLAM with Multi-Fisheye Camera Systems

Stefan Hinz, Steffen Urban

Institute of Photogrammetry and Remote Sensing

KIT, Karlsruhe

Contents

• Application of Visual Multi-fisheye SLAM for Augmented Reality applications

Components of Visual SLAM

- Calibration and basic image data
- Initialization using virtual 3D model
- Egomotion determination, Tracking
- Integration with image based measurement system

Contents

• Application of Visual Multi-fisheye SLAM for Augmented Reality applications

Components of Visual SLAM

- Calibration and basic image data
- Initialization using virtual 3D model
- Egomotion determination, Tracking
- Integration with image based measurement system

Application: Planning of new Underground railway tracks

- Support for different planning phases
- Investigation of different tracks
- Localization of emergancy tunnels
- etc

Rettungsschacht mit schräg verlaufendem seitlichen Zugang

Virtual 3D plans available

Different resolutions, different level of details

GIS as background information

Augmented Reality System

- Development of a mobile AR-System
- Support of co-operative tunnel/track planning:
 - Overlay of planned and already existing objects
 - Analysis of geometric deviations and missing objects
 - In-situ visualization
 - Documentation

Augmented Reality System

• Example: Emergancy tunnel

Augmented Reality System

• Example: Emergancy tunnel

System concept

- Constraints:
 - Indoor/underground → no GPS/GNNS available
 - Bad illumination conditions
 - Narrow and "cluttered" environment
 - Many occlusions

System concept

- Mobile AR-System
 - Prototype
 - 3 Fisheye cameras
 - Complete coverage
 - Robust estimation of position (and tracking)
 - Visualization unit

Contents

• Application of Visual Multi-fisheye SLAM for Augmented Reality applications

Components of Visual SLAM

- Calibration and basic image data
- Initialization using virtual 3D model
- Egomotion determination, Tracking
- Integration with image based measurement system

Camera Calibration

Basics: Model for fisheye project of Scaramuzza et al. 2006

$$P = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \alpha \begin{bmatrix} u \\ v \\ f(\rho) \end{bmatrix} = \alpha p$$

with $f(\rho) = a_0 + a_2 \rho^2 + \dots + a_n \rho^n$

- Extensions
 - Multiple collinearity equations (3 cameras)
 - Robust bundle approach
 - Simultaneous estimation of all parameter

Sensor

Improvement in terms of speed and

geometric quality by factor 2 - 4

Validation

- Calibration using 3D-Model
- Ground-truth (tachymeter)
- Accuracy:

Position: 0.4-1.5cm orientation 0.35-2.6mrad

Basic image data (1): Multi-Fisheye Panorama

- No homography anymore
- Mapping onto cylinder (using the relative orientation)

Basic image data (1): Multi-Fisheye Panorama

- No homography anymore
- Mapping onto cylinder (using the relative orientation)
- Transformation into coordinate system of 3d-model

Panorama trajectory

Basic image data (2): Fisheye Stereo

Basic image data (2): Fisheye Stereo

Rectification (via mapping onto cylinder) Transformation into epipolar geometry

=> limited accuracy of 3D points

=> useful for initial 3D description of imaged environment

Contents

• Application of Visual Multi-fisheye SLAM for Augmented Reality applications

Components of Visual SLAM

- Calibration and basic image data
- Initialization using virtual 3D model
- Egomotion determination, Tracking
- Integration with image based measurement system

Self-localization / Initialization of AR-System

- Challenges:
 - no GPS \rightarrow no absolute position
 - Many potential initial positions → many hypotheses to start tracking inside 3D-model

Self-localization / Initialization of AR-System

Challenges:

- no GPS \rightarrow no absolute position
- Many potential initial positions \rightarrow many hypotheses to start tracking inside 3D-model
- Many clutter and objects not included in virtual 3D model
- Many discrepancies between images and virtual 3D model

Self-localization / Initialization of AR-System

Challenges:

- no GPS \rightarrow no absolute position
- Many potential initial positions \rightarrow many hypotheses to start tracking inside 3D-model
- Many clutter and objects not included in virtual 3D model
- Many discrepancies between images and virtual 3D model
- Virtual 3D model is not textured => less features for maching
- Real-time requirements

 \rightarrow Indexing (search trees), GPU processing (Rendering), Parallel processing

Model-based Initialization

("Model" = 3D Modell)

Task:

Model-based Initialization

("Model" = 3D Modell)

Simulation of virtual camera poses

Features: Extraction of visible 3D-Model edges

- . Using already determined fisheye distortion
- . Rendering mit "Vertex Shadern"

Features: Extraction of visible 3D-Model edges

- . Using already determined fisheye distortion
- . Rendering mit "Vertex Shadern"

Example

Example: visible edges

Self-localization: estimation by particle filtering

Self-localization

• Fine registration

• Fine registration

Contents

• Application of Visual Multi-fisheye SLAM for Augmented Reality applications

Components of Visual SLAM

- Calibration and basic image data
- Initialization using virtual 3D model
- Egomotion determination, Tracking
- Integration with image based measurement system

- Extension of conventional visual SLAM algorithm (ORB-SLAM)
- \Rightarrow Multi-Fisheye cameras
- \Rightarrow Optional: support of virtual 3D modell

Challenges:

Fusion of piont- und model-based tracking

Challenges:

Fusion of piont- und model-based tracking

=> Multi-colinearity SLAM with refinement of keyframes

Challenges:

- Fusion of piont- und model-based tracking
 => Multi-colinearity SLAM with refinement of keyframes
- Feature extraction and self-calibration adapted to fisheye projections
 => mdBRIEF with online learning

Challenges:

- Fusion of piont- und model-based tracking
 Multi-colinearity SLAM with refinement of keyframes
- Feature extraction and self-calibration adapted to fisheye projections
 mdBRIEF with online learning
- Distinction of static, moving and re-locatable object points
 => Co-visibility graph, robust estimation

(not yet: utilization of uncertainties of 3D model)

Learning of geometric and radiometric properties for co-visibility graph

Geometry

Radiometry:

Learning of geometric and radiometric properties for co-visibility graph

➡ Zeit

Radiometry:

Geometry:

Learning of geometric and radiometric properties for co-visibility graph
 Zeit

Radiometry:

Geometry:

- Weighting of points (geometric restrictions)
- Testing of radiometric invariances
- Efficient selection and indexing (Wuest et al. 2007)

Multi-Fisheye SLAM (Self-localization and mapping)

MultiCol-SLAM

Steffen Urban, Stefan Hinz

Institute of Photogrammetry and Remote Sensing (IPF)

Some numbers

	Single fisheye camera			Multi-fisheye camera system			
	ORB	dBRIEF	mdBRIEF	ORB	dBRIEF	mdBRIEF	
	% tracked	% tracked	% tracked	% tracked	% tracked	% tracked	
Laser 1	88.4	89.7	89.7	88.6	88.7	88.7	
Laser 2 fast	86.7	92.9	93.7	69.8	93.2	93.6	
Indoor 1 stat. env.	95.2	91.5	96.9	95.5	98.8	98.7	
Indoor 2 dyn. env.	91.8	95.1	95.1	97.5	98.7	99.0	
Outdoor 1 dyn. env.	31.0	32.0	34.1	93.0	93.0	90.1	

• Even more numbers (ATE)

	Single fisheye camera			Multi-fisheye camera system			
	ORB	dBRIEF	mdBRIEF	ORB	dBRIEF	mdBRIEF	
	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	
Laser 1	31.0	33.0	33.0	1.4	1.3	1.5	
Laser 2 fast	28.1	25.3	25.5	(\mathbf{X})	7.0	5.3	
Indoor 1 stat. env.	32.4	11.2	3.3	2.1	2.7	2.5	
Indoor 2 dyn. env.	13.3	14.7	14.2	1.8	2.5	2.7	
Outdoor 1 dyn. env.	(X)	(\mathbf{X})	(X)	3.6	17.1	13.4	

Contents

• Application of Visual Multi-fisheye SLAM for Augmented Reality applications

Components of Visual SLAM

- Calibration and basic image data
- Initialization using virtual 3D model
- Egomotion determination, Tracking
- Integration with image based measurement system

Appendix: Fusion with Tablet-System

- Image to image matching
- In-situ analysis
 - Dokumentation
 - Annotation

Correction of distortion and matching

Result

Thank you for your attention...

and many thanks to Dr. Steffen Urban

Further readings:

Urban, Leitloff, Hinz (2015): Multi-fisheye camera calibration. *ISPRS Journal* Urban, Leitloff, Wursthorn, Hinz (2016): Multi-fisheye tracking. *Int. Journal of Computer Vision* Urban, Weinmann, Hinz (2017, to appear): mdBrief.... *Computer Vision and Image Understanding*