

56th Photogrammetric Week '17 September 11-15, 2017 Stuttgart, Germany

Advancement in Photogrammetry, Remote Sensing and Geoinformatics

From Applied Research to Application - Remote Sensing Products for Waterway Management

Herbert Brockmann

Agenda

Introduction

Relevant products

Selected potential applications

- currently in operation
- short to mid-term operational
- mid to long-term operational

4 Perspectives

Responsibilities

• Federal Institute of Hydrology (BfG)

- scientific institute in fields of "water"
 - applied research
 - consulting
 -
- essential users of support
 - Federal Ministry of Transport and Digital Infrastructure
 - Waterways and Shipping Administration (WSV)

BfG department Geodesy

- reference systems / geokinematics
- hydrography / topography
- hydraulic engineering geodesy

⇒ all are working with remote sensing techniques

- Understanding of remote sensing
 - sensor platforms
 - unmanned aerial vehicle (UAV)
 - manned aerial vehicle (aircraft, helicopter, gyrocopter)
 - satellite
 - sensors
 - passive (digital cameras)
 - active (laser scanner, radar)
- Needs based work in project teams
 - final product user and manufacturer
 - all kinds of researchers (university, applied etc.)
 - system manufacturer

User requirements

Standard georeferenced products

- classified 3D point clouds:
- 3-D structure lines:
- DTM / DSM / Δ-models:
- 1-D 3-D deformation vectors:
- ortho photos (RGB, SAR):
- 2-D/3-D water-land-borders:
- 3-D water levels:

⇒ recurrent necessary accuracy:

- 1 8 points per m²
- point distance ≈ 5 m
- 1 m x 1 m grid
- 1 cm per year
- GSD = 0.1 m 1 m
- point distance ≈ 5 m
- point distance = 100 m
- comparable to ALS or multibeam echo sounding
- Additional products with lower or higher accuracies
 - case-by-case

3-D structure lines from point clouds

Research related to software OPALS

- detection of 2-D approximate lines based on an inclination model
- modelling of 3-D structure lines by terrain approximation using geometry models

polynomial pair of cylinders

hanging slope

belly ditch

plane - cone

slops with curved lines

pair of planes

slope

ditch

Operational pilot project

Havel river area

- 1,030 km²
- point density ≤ 2 points per m²
- slope change > 20°
- accuracy corresponding to the ALS data
- manually reworking < 30 min per km²

Rathenow

Hennigsdor

Falken

Surface data via UAS

Monitoring requirements

- classified DTM, DSM, difference models of hydraulic structures and their surroundings
 - 10 cm x 10 cm grid
 - 13 surface classes (e.g. lock pier, lawn)
- signalized, non-signalized object points
- difference uncertainty:
 - 2 mm per measuring epoch

Overarching aims

- usable measurement results
- practice-oriented guideline
 - technical use
 - economic use
- result transferability
 - other transport administrations

600 m x 800 m

Evaluation / optimizing

Spatial motion via PSI-SAR

• Monitoring requirements

- relative motions of hydraulic structures and their surroundings
 - spatial vectors, ΔR
 - 1-D / 3-D vectors
- difference uncertainty:
 - aimed at 2 mm

Overarching aims

- usable processing results
- feasibility study
 - technical use
 - economic use
- result transferability
 - other transport administrations

Development / optimizing

Bundesanstalt für Gewässerkunde

Schifffahrtsverwaltung des Bundes

Universität Stuttgart

short to mid-term

Research needs

- targeted potentials
 - resolution

.

- temporal image distances
- impact of corner reflectors
- comparison of Sentinel-1 and TerraSAR-X products

Laser bathymetry data

- Requirement
 - identification of the reflector
- Potentials through ALS data classification
 - non-ground points
 - identification
 - reflection classes
 - macrophytes
 - biotope types
 - roughness

Classification of laser bathymetry data

Multidisciplinary object catalog

- river bed including the foreland
 - shallow water zone
 - free-flowing
 - regulated

•

macrophytes

short to mid-term

Research needs

- simultaneous sensor use
 - ALS (red and green light)
 - RGB(Nir) camera
 - hyperspectral camera
- geometry
 - data fusion
- radiometry
 - ground/non-ground separation
 - deduction of relevant reflection classes

Watt topographies via InSAR

• Main problem

only few possibilities of data collection

Potentials compared to ALS

- up to 5-fold larger data collection output
 - flight configuration
 - regardless of weather conditions
 - few surface classes

Development to operational use

short to mid-term

Research needs

- simultaneous data collection and processing, X- and S-band
- system calibration

.

 data georeferencing and classification

Bundesanstalt für Gewässerkunde

TerraSAR-X, © DLR

Flood zones via remote sensing data

Problems and simultaneous potentials
operational

- on time availability of collection systems important data
- important data parameters
 - resolution
 - accuracy
 - reliability

Automatized processing of flood borders

Acquisition of exhaustive flood scenarios

- use case 1: visual 2-D information data for crisis management; supply as soon as possible, max. in 24 hours
- use case 2: 3-D validation data for hydraulic modeling; supply approx. after 6 month

short to mid-term

Research needs

- processing algorithms
- plausibility check
- supply of additional meta information

Pre-project "visible depth"

• Problem

• sufficient visible depth for laser bathymetry use in larger areas (e.g. closed to North Sea coastlines)

Solution idea

- forecast of visible depth areas
 - use of Sentinel-2 data
 - use of existing turbidity and sediment measurement networks
 - •

mid to long-term

Preliminary studies

- fundamental feasibility
- if feasible:
 - expectable products
 - professional framework
 - research needs
 - necessary expense

Pre-project "gauge at the sky"

Requirements for forecasting

- operational availability of areal North Sea water level
 - sections
 - 5 cm uncertainty
 - all 10 30 days
- Satellite altimetry
 - use of Sentinel-3/-6 data
 - with additional in-situ measurements

mid to long-term

Preliminary studies

- fundamental feasibility
- if feasible:

0°0'0"

- expectable products
- professional framework
- research needs
- necessary expense

Conditions of success

Essentials

- user orientation
- use of necessary and accepted standards
 - Guide to the Expression of Uncertainty in Measurement (ISO/BIPM, 2008)

•

- focus on operational solutions
- feasibility statements
 - clear and realistic
 - including professional and economic efficiencies
- general inclusion of applied research
 - more use of funding programs by public administrations
 - work in teams with cooperating partner institutions
- realization of pre-projects in advance by fundamental issues

• ...

Future importance of remote sensing in the WSV

• more important local supplement

Manned areal systems

- still upward trend
- additional partial solutions
- new complete solutions only in particular cases

Satellite systems

- slowly rising
- still greater efforts
- Operations gives and gets new opportunities

Bundesanstalt für Gewässerkunde

Many thanks for your attention

Herbert Brockmann

Head of Department Geodesy German Federal Institute of Hydrology Am Mainzer Tor 1 56068 Koblenz Germany

Phone: +49 261 1306-5214, Fax: +49 261 1306-5088 E-Mail: brockmann@bafg.de www.bafg.de