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Introduction
• Image analysis: make information contained in images explicit 
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Introduction
• Image analysis: make information contained in images explicit 

• Supervised classification: 
+ Transferability: adapt classifier to new data via training data
– Training data have to be generated manually

• 4
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How to Reduce the Efforts for Generating 
Training Data?

1) Adapt a classifier to new data with scarce or no new training data
 Transfer Learning [Pan & Yang, 2010]

a) Domain adaptation: adapt classifier to new feature distribution
[Bruzzone & Marconcini, 2009; Paul et al., 2015; 2016]

b) Source selection: find optimal source from a pool of training 
images [Vogt et al., 2017]
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How to Reduce the Efforts for Generating 
Training Data?

1) Adapt a classifier to new data with scarce or no new training data
 Transfer Learning [Pan & Yang, 2010]

a) Domain adaptation: adapt classifier to new feature distribution
[Bruzzone & Marconcini, 2009; Paul et al., 2015; 2016]

b) Source selection: find optimal source from a pool of training 
images [Vogt et al., 2017]

2) Use existing map for training and classification [Maas et al., 2016; 2017]

 Learning under label noise [Frénay & Verleysen, 2014]
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Outline
• Introduction

• Transfer Learning:

– Domain adaptation by instance transfer

– Creating a synthetic domain by source selection

• Training under label noise:

– Using existing maps for training and classification

• Conclusion
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Introduction Transfer learning Learning under label noise Conclusion

Transfer Learning
• Important definitions [Pan & Yang, 2010]:

– Domain

– Task

8

for Source and 
Target data

different, but related

feature space feature distribution

label space predictive function (classifier)
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Introduction Transfer learning Learning under label noise Conclusion

Transfer Learning
• Important definitions [Pan & Yang, 2010]:

– Domain

– Task

• Assumptions:

– Abundant amount of training samples in DS

– Few or no training samples in DT

• Goal: Transfer knowledge from DS to DT

9

for Source and 
Target data

different, but related

feature space feature distribution

label space predictive function (classifier)
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Introduction Transfer learning Learning under label noise Conclusion

Domain Adaptation (DA)
• Specific setting of transfer learning:

– No training data in target domain

– Tasks are identical

– Domains are different (but related): 

• Method: Instance transfer

– Replace source data by weighted semi-labeled target samples

– Iterative adaptation of classifier to target domain data

10
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Introduction Transfer learning Learning under label noise Conclusion

DA: Scenario
• Classification of images:

– Images in DS and DT have the same features

– Class structures are identical

11

Source domain DS: image 
with training samples

Target domain DT: image, 
no training samples
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Introduction Transfer learning Learning under label noise Conclusion

DA by Instance Transfer: General Strategy
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Introduction Transfer learning Learning under label noise Conclusion

Domain Adaptation by Instance Transfer

13

• Current training data set	ܶܦ: initialized by source data 

• Classifier trained on source data

labelled source samples
unlabelled target samples
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Introduction Transfer learning Learning under label noise Conclusion

Domain Adaptation by Instance Transfer
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• Domain adaptation: select samples to be added / removed

Iteration 1

labelled source samples
unlabelled target samples
source samples to be removed from ܦܶ
target samples to be added to ܦܶ
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Introduction Transfer learning Learning under label noise Conclusion

Domain Adaptation by Instance Transfer
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• Domain adaptation: new version of ܶܦ

Iteration 1

labelled source samples
unlabeled target samples
semi-labelled target samples in ܦܶ
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Introduction Transfer learning Learning under label noise Conclusion

Domain Adaptation by Instance Transfer
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• Domain adaptation: train new classifier on ܶܦ / re-weighting

Iteration 1

labelled source samples
unlabeled target samples
semi-labelled target samples in ܦܶ
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Introduction Transfer learning Learning under label noise Conclusion

Domain Adaptation by Instance Transfer
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• Domain adaptation: select samples to be added / removed

Iteration 2

labelled source samples
unlabelled target samples
source samples to be removed from ܦܶ
target samples to be added to ܦܶ
semi-labelled target samples in ܦܶ
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Introduction Transfer learning Learning under label noise Conclusion

Domain Adaptation by Instance Transfer
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• Domain adaptation: new version of ܦܶ

Iteration 2

labelled source samples
unlabelled target samples
semi-labelled target samples in ܦܶ
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Introduction Transfer learning Learning under label noise Conclusion

Domain Adaptation by Instance Transfer
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• Domain adaptation: train new classifier on ܶܦ / re-weighting

Iteration 2

labelled source samples
unlabeled target samples
semi-labelled target samples in ܦܶ
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Introduction Transfer learning Learning under label noise Conclusion

Domain Adaptation by Instance Transfer
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• Domain adaptation: select samples to be added / removed

Iteration 3

source samples to be removed from ܦܶ
target samples to be added to ܦܶ
semi-labeled target samples in ܦܶ
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Introduction Transfer learning Learning under label noise Conclusion

Domain Adaptation by Instance Transfer
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• Domain adaptation: new version of ܦܶ

Iteration 3

semi-labelled target samples in ܦܶ
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Introduction Transfer learning Learning under label noise Conclusion

Domain Adaptation by Instance Transfer

22

• Domain adaptation: train new classifier on ܦܶ / re-weighting

Iteration 3

semi-labelled target samples in ܦܶ

• No source domain samples in ܦܶ  adapted classifier

DA
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Introduction Transfer learning Learning under label noise Conclusion

DA by Instance Transfer: Key Ingredients

23

• Base classifier: multiclass logistic regression

݌ ܥ ൌ ܠ	|௞ܥ ൌ
௘௫௣ ೖܟ

೅·૖ ܠ

∑ ௘௫௣ ೕܟ
೅·૖ ೕܠ

• Criteria for sample selection: 

– Source samples to be removed: distance from decision boundary

– Target samples to be added: distance from nearest points in	ܶܦ

• Definition of semi-labels: Current state of the classifier

• Sample weights in training: distance from decision boundary

• Regularization: previous state of the classifier [Paul et al., 2015; 2016]

model parameters w
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Introduction Transfer learning Learning under label noise Conclusion

DA Example: Vaihingen Labelling Challenge
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• Image and height data; evaluate overall accuracy (OA)

OA = 85.9 % OA = 80.9 % OA = 85.6 %

Results for 
target image:

ground
building
tree

Training on 
target data

 optimal case

Training on source 
data, no DA

5 % loss in OA

Result after DA 

only 0.3 % loss
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Introduction Transfer learning Learning under label noise Conclusion

DA Example: Cases with Positive Transfer

25

• Positive Transfer: 22 of 36 patch pairs (61% of test set)

– Green: compensation of loss in OA due to domain adaptation

– Blue: remaining loss in OA after domain adaptation

– Average improvement in OA over 22 test pairs: 4.7%

• 14 instances of negative transfer: average loss in OA of -3.7%
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Outline
• Introduction

• Transfer Learning:

– Domain adaptation by instance transfer

– Creating a synthetic domain by source selection

• Training under label noise:

– Using existing maps for training and classification

• Conclusion
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Introduction Transfer learning Learning under label noise Conclusion

Source Selection: Motivation
• Different scenario: assumes large data base of labelled images

• Which images from the database are suited as source domains 
for Domain Adaptation?  

– Use “most similar” image for training

– Avoid negative 
transfer

27

Target image
Large database of
labelled images

?
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Introduction Transfer learning Learning under label noise Conclusion

Source Selection: Distance Measures
• Source selection requires distance measure between distributions

• Two variants for such domain distances [Vogt et al., 2017]

– Unsupervised: ݀௎஽஺ ൌ 2	݀ெெ஽ ,்ܦܶ ௌܦܶ

– Supervised: ݀ௌ஽஺ ൌ ݀௎஽஺ ൅ ߳ ݄ௌሺݔሻ, ௌܦܶ

 Optimal Source: 	ܵ ൌ 	 arg	min
ௌ∈ॺ

݀ሼௌ஽஺,௎஽஺ሽ

28

Classification error in source domain

Maximum Mean Discrepancy
[Gretton et al., 2012]
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Introduction Transfer learning Learning under label noise Conclusion

Synthetic Source Generation

29

• The nearest Source Domain may not be a perfect match
 Synthetic source: linear combination of 

nearest sources! 

ܶ



Institute of Photogrammetry and GeoInformation

Introduction Transfer learning Learning under label noise Conclusion

Synthetic Source Generation

30

ܵ̅ ൌ෍ߨௌ ⋅ ܵ
ௌ∈ॺ

ܶ

• Synthetic source: requires domain weigthts ߨௌ
[Vogt et al., 2017]
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Introduction Transfer learning Learning under label noise Conclusion

Source Selection: Experiments
• Compare different variants of source selection using aerial 

images from three German cities

• Measure difference in Overall Accuracy ΔOA	 compared to using 
target labels

31

3CityDS
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Introduction Transfer learning Learning under label noise Conclusion

Source Selection: Results for 3CityDS

OA [%]

Pe
rc
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til

e

• Combined source selection + Domain Adaptation [Vogt et al., 2017]:

– Synthetic source generation improves prospects for DA

– Improvement due to DA is small but significant
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Outline
• Introduction

• Transfer Learning:

– Domain adaptation by instance transfer

– Creating a synthetic domain by source selection

• Training under label noise:

– Using existing maps for training and classification

• Conclusion
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Introduction Transfer Learning Learning under label noise Conclusion

Learning under Label Noise: Motivation
• Topographic applications: 

– Maps do exist, but may be outdated

• Observation: Most areas do not change over time

– Use existing map for deriving training labels

– Leads to errors in the training labels (label noise) 
 Learning under label noise [Frénay & Verleysen, 2014]

34
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Introduction Transfer Learning Learning under label noise Conclusion

Learning under Label Noise: Motivation

35

ImageData Outdated map Updated map (wanted)
 Features x  Observed class labels C  true class labels C
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Introduction Transfer Learning Learning under label noise Conclusion

Label Noise Robust Logistic Regression

36

• Multiclass logistic regression

݌ ܥ ൌ ܟ,ܠ	|௞ܥ ൌ
௘௫௣ ೖܟ

೅·૖ ܠ

∑ ௘௫௣ ೕܟ
೅·૖ ೕܠ

• Training: 

– Determine w so that ݌ ܥ ൌ ܟ,ܠ	|௞ܥ delivers the true labels C

• Problem: True class labels C are unknown in training
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Introduction Transfer Learning Learning under label noise Conclusion

Label Noise Robust Logistic Regression

37

• Solution: Determine w from observed map labels C
via ݌ ܥ ൌ ܟ,ܠ	|௞ܥ :

݌ ܥ ൌ ܟ,ܠ	|௞ܥ ൌ ∑ ݌ ܥ ൌ ܥ|௞ܥ ൌ ௔ܥ ⋅ ݌ ܥ ൌ ௔ܟ,ܠ	|௔ܥ

• Iterative training [Bootkrajang & Kabán, 2012; Maas et al., 2016]:

– Parameters w of the classifier 

– Parameters of the noise model: 
Matrix  with ka ݌	= ܥ ൌ ܥ|௞ܥ ൌ ௔ܥ

Transition probability 
noise model

Posterior for true labels C



Institute of Photogrammetry and GeoInformation

Introduction Transfer Learning Learning under label noise Conclusion

Experiments (Vaihingen Data): 
Simulated Changes

38

Outdated map             Orthophoto Reference 
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Introduction Transfer Learning Learning under label noise Conclusion

Experiments: Simulated Changes

39

[Maas et al., 2016]

• Reference        LN  (84.0% OA) MLR  (81.9% OA)



Institute of Photogrammetry and GeoInformation

Introduction Transfer Learning Learning under label noise Conclusion

Learning under Label Noise: Motivation
• Topographic applications: 

– Maps do exist, but may be outdated

• Observation: Most areas do not change over time

– Use existing map for deriving training labels

– Leads to errors in the training labels (label noise) 
 Learning under label noise [Frénay & Verleysen, 2014]

– Use existing map as prior information in classification

– Consider the fact that changes occur in clusters

40
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Introduction Transfer Learning Learning under label noise Conclusion

Classification Considering the Existing Map
• Contextual classification: Conditional Random Field (CRF) 

[Kumar & Hebert, 2006]

• Simultaneous determination of all class labels          given 

– observed image data 

– observed class labels

• Maximisation of the joint posterior
݌ ,ܠ	|۱ C

41
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Introduction Transfer Learning Learning under label noise Conclusion

Factorisation of the Joint Posterior
• Factorisation of ݌ ,ܠ	|۱ C according to the graphical model

݌							 ,ܠ	|۱ C ∝ 	ෑ߮ ,௡ܥ ܠ
࢔

⋅ෑ߰ ,௡ܥ ,௠ܥ ܠ
࢓,࢔

⋅ෑ࢔ࣂߛ ,௡ܥ ௡ܥ
࢔

– Association potential

Label noise robust logistic regression
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Introduction Transfer Learning Learning under label noise Conclusion

Factorisation of the Joint Posterior
• Factorisation of ݌ ,ܠ	|۱ C according to the graphical model

݌							 ,ܠ	|۱ C ∝ 	ෑ߮ ,௡ܥ ܠ
࢔

⋅ෑ߰ ,௡ܥ ,௠ܥ ܠ
࢓,࢔

⋅ෑ࢔ࣂߛ ,௡ܥ ௡ܥ
࢔

– Association potential

– Interaction potential 

Data-dependent smoothing 
[Boykov et al., 2001]
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Introduction Transfer Learning Learning under label noise Conclusion

Factorisation of the Joint Posterior
• Factorisation of ݌ ,ܠ	|۱ C according to the graphical model

݌							 ,ܠ	|۱ C ∝ 	ෑ߮ ,௡ܥ ܠ
࢔

⋅ෑ߰ ,௡ܥ ,௠ܥ ܠ
࢓,࢔

⋅ෑ࢔ࣂߛ ,௡ܥ ௡ܥ
࢔

– Association potential

– Interaction potential

– Temporal assoc. pot.

Labels from old map: observations

Transition probabilities p(Cn | Cn)

Map weights θn: reduce weights in 
compact areas of change [Maas et al., 2017]
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Introduction Transfer Learning Learning under label noise Conclusion

Example: Vaihingen, Patch 1

45

Orthophoto Outdated map 3 Reference
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Introduction Transfer Learning Learning under label noise Conclusion

Example: Vaihingen, Patch 1

46

Init: Without iterative re-training and classification [Maas et al., 2016]

Overall Accuracy: 80.1 %



Institute of Photogrammetry and GeoInformation

Introduction Transfer Learning Learning under label noise Conclusion

Example: Vaihingen, Patch 1

47

Init Vθ: Consider existing map [Maas 
et al., 
2017]

Overall Accuracy: 80.1 % Overall Accuracy: 88.5 %
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Mean Overall Accuracy (Vaihingen)
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Outline
• Introduction

• Transfer Learning:

– Domain adaptation by instance transfer

– Creating a synthetic domain by source selection

• Training under label noise:

– Using existing maps for training and classification

• Conclusion
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Conclusion
• Reduce efforts for manual generation of training data: 

– Domain adaptation:

Can improve classification considerably

Allows for limited degree of change only

– Source selection

Works well if a large pool of training data exists

Scenario without such data needs to be investigated

– Use existing maps for classification: 

No manual generation of training data at all

Main limitation: New objects with unusual appearance

50
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Future Work
• Deep neural networks (DNN) outperform other classifiers

 Can similar principles be applied to DNN? 

– Transfer Learning: Representation transfer

Usually requires target labels for retraining [Yosinski et al., 2014]

First methods requiring no target labels: 
Deep Adaptation Networks [Long et al., 2015]

– Learning under label noise:

May be tackled by specific loss functions in training 

Example: road extraction using existing road database 
[Mnih & Hinton, 2012]
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