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1. INTRODUCTION 

The classification of images and other remote sensing data is a fundamental task to derive semantic 
information about the objects in the depicted scene automatically. Current research focuses on 
statistical approaches, in which the knowledge about the objects is given implicitly in the form of 
training samples that are used to train a classifier. These approaches can be easily adapted to new 
domains by defining a new representative set of training data. However, this flexibility comes at a 
cost: the need to generate training data. This article presents two strategies for avoiding the manual 
generation of new training data.  

2. DOMAIN ADAPTATION  

Transfer Learning (TL) tries to answer the question whether a classifier trained in the past using a 
dataset for which a sufficient amount of training data was available can be of any help in the classi-
fication of new data even if they have slightly different properties. Pan and Yang (2010) define a 
domain D = {ℱ; P(X)} to consist of a feature space ℱ and a marginal probability distribution P(X) 
with X  ℱ. In TL, we consider different domains, the source domains DS and the target domain 
DT. Given a domain D, a task T = {ℂ; h(∙)} consists of a label space ℂ and a predictive function h(∙). 
This function can be learned from the training data {xi, Ci}, where xi  X and Ci  ℂ. TL is defined 
as a procedure that helps to learn the predictive function hT(∙) in DT using the knowledge in DT and 
DS, where either the domains or the tasks, or both, are different but related (Pan & Yang, 2010).  
Domain adaptation (DA) is a special sub-category of TL in which different domains are supposed 
only to differ by the marginal distributions of the features and the posterior class distributions 
(Bruzzone & Marconcini, 2009). In our application, a domain corresponds to a set of remote 
sensing data, and the source and target domains (datasets) are different, e.g. due to different lighting 
conditions. DA allows transferring a classifier trained on a set of remote sensing data where training 
data are available (DS) to other scenes (DT) without having to provide additional training data in DT. 
There are different strategies for DA (Pan & Yang, 2010). Methods based on feature representation 
transfer try to find feature representations that allow a simple transfer from the source to the target 
domain. Methods based on instance transfer try to re-use training samples from DS directly, 
replacing them by samples from DT receiving their class labels (semi-labels) based on the current 
state of the classifier, e.g. (Bruzzone & Marconcini, 2009).  

2.1. Domain Adaptation by Instance Transfer based on Logistic Regression 

Paul et al. (2016) propose a method for DA based on instance transfer for logistic regression. In 
logistic regression, the class label Ci of a pixel i is determined by maximising the posterior  
P(Ci | fi (x)) for Ci given some feature vector fi (x) defined for that pixel:  
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where Ck is a specific value for Ci, w=[w1, …, wK] are the parameters to be determined in training, 
and K is the number of classes. The parameters w in Eq. 1 can be determined by maximising  
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given a training dataset ܶܦതതതത consisting of pairs of feature vectors fi (x) and corresponding class 
labels Ci. In Eq. 2, tij is a variable indicating if the value of the class label Ci of sample i is Cj or not, 
and gi is a weight assigned to sample i. The prior p(w) is essential for regularisation.  
The training dataset ܶܦതതതതതത is initialized by training samples from the source domain DS, where class 
labels are assumed to be available. Consequently, the parameters w are determined by maximising 
Eq. 2, using gi = 1 for all training samples and a zero mean Gaussian prior for p(w).  
In DA, the classifier trained using only source data is gradually adapted to the distribution of the 
data in DT. In iteration t, a new training dataset ܶܦ௧തതതതത is generated. Firstly,  source samples are 
removed from ܶܦ௧ିଵതതതതതതതത, starting with samples on the wrong side of the decision boundary and 
continuing with samples on the correct side, in both cases ordering the samples by their distances 
from the decision boundary. Secondly,  samples from DT are added to ܶܦ௧തതതതത, receiving their semi-
labels from the current state of the classifier. The strategy for the selection of these samples is 
crucial for success; we select the target samples having the smallest average distance from their k 
nearest neighbours in ܶܦ௧ିଵതതതതതതതത. Having thus defined a new training dataset ܶܦ௧തതതതത, the weights gi of the 
samples in ܶܦ௧തതതതത are determined so that samples that are close to the current decision boundary 
receive a lower weight than more distant ones. Finally, new values for the parameters wt are 
determined by maximising Eq. 2, using the values wt-1 as the mean of the Gaussian prior. This 
procedure is repeated until no source samples are contained in ܶܦ௧തതതതത (Paul et al., 2016).  
In their experiments, Paul et al. (2016) considered pairs of image patches of the Vaihingen dataset 
(Wegner et al., 2014) as pairs of source and target domains. Applying logistic regression trained on 
the source domain to the target domain without DA resulted in a loss in overall accuracy (OA) 
larger than 5%. Using DA resulted in a positive transfer in 22 of the 36 test cases (61%); the 
average improvement in OA for these pairs due to DA was 4.7%. In the remaining cases, the 
prerequisites of the domains to be related was not fulfilled.  

2.2. Source Selection and Domain Adaptation 

Here we assume that there is a database of labelled images that can be used as source domains to 
train a classifier for a new (target) image. It is the goal of source selection to find the most 
appropriate source image for training a classifier to analyse a specific target image. To measure the 
similarity of domains, Vogt et al. (2017) propose a supervised domain distance dSDA:   
 

 ݀ௌሺܶܦതതതതௌ, തതതത்ሻܦܶ ൌ ߳ሺ݄௦, തതതതௌሻܦܶ  2 ⋅ ݀ெெሺ	ܶܦതതതത்,  തതതതௌሻ.   (3)ܦܶ
 

In Eq. 3, ݀ௌሺܶܦതതതതௌ,  തതതത்ሻ is a distance between the distributions of the data in the source and targetܦܶ
domains and ߳ሺ݄௦, ,തതതത்ܦതതതതௌሻ is the classification error of the source task. The term ݀ெெሺܶܦܶ  തതതതௌሻ isܦܶ
a linear kernel-based estimation of the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012). 
Vogt et al. (2017) also propose the unsupervised domain distance dUDA:   
 

   ݀ሺܶܦതതതതௌ, തതതത்ሻܦܶ ൌ 2 ⋅ ݀ெெሺ	ܶܦതതതത்,  തതതതௌሻ,     (4)ܦܶ
 

which can be determined without training labels in the source domain. The optimal source ܵ̅ can be 
determined by minimizing either ݀ௌ or ݀ௌ. As the optimal source may still be relatively 
dissimilar from the target domain, Vogt et al. (2017) additionally suggest using a synthetic source 
S that is the linear combination of multiple sources and whose features are distributed according to:  
  

ሻܠௌഏሺ    ൌ ∑ ௦ߨ ⋅ ሻ௦ܠௌೞሺ ,       (5) 
 

where ௌೞሺܠሻ is the distribution of the features x for source s and ߨ௦  0 is the corresponding 
weight with ∑ ௦ߨ ൌ 1௦ . The MMD distance can also be determined for the synthetic domain S, and 
Vogt et al. (2017) propose a fast greedy scheme for determining the weights ߨ௦.  



In the experimental evaluation, Vogt et al. (2017) first determine the overall accuracy of a classifier 
trained on the target domain and then measure the difference in overall accuracy OA that is 
obtained when a classifier trained on a selected source is applied to the target domain without 
additional domain adaptation. The results show that single source selection according to the 
distances in Eqs. 3 and 4 outperforms random source selection by a large margin, and synthetic 
source selection performs even better, with a slight advantage of ݀ௌ over ݀. Applying domain 
adaptation results in a small improvement if a synthetic source is used (Vogt et al., 2017).  

3. LEARNING UNDER LABEL NOISE  

In order to use existing maps for training a classifier to be applied to new data, the training 
procedure needs to be able to cope with errors in the training labels due to temporal changes (label 
noise; Frénay & Verleysen, 2014). In remote sensing, this problem is often dealt with by detecting 
and eliminating wrong training samples (data cleansing). An alternative is to use probabilistic 
methods for training under label noise that also estimate the parameters of a noise model. One such 
approach is the label noise tolerant logistic regression (Bootkrajang & Kabán, 2012) which is also 
used in (Maas et al., 2016). Eq. 1 is applied to classify each pixel i in the image to be classified, but 
training cannot be based on maximising the probability in Eq. 2, because the true class labels Ci of 
the training samples are unknown. We only know the observed labels Ci that are extracted from the 
existing map, and thus, we can determine the parameters w of the classifier (Eq. 1) by maximising  
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where tij indicates whether the observed label Ci is Cj, and ܲ൫ܥ ൌ   ሻ൯ is substituted byܠሺ|ܥ
 

   ܲ൫ܥ ൌ ሻ൯ܠሺ|ܥ ൌ ∑ ܲ൫ܥ ൌ ܥ|ܥ ൌ ൯ܥ ⋅ ܲሺܥ ൌ ሻሻܠሺ|ܥ .  (6) 
 

In Eq. 6, ܲሺܥ ൌ  ሻሻ is the required classifier related to the true labels and parameterised byܠሺ|ܥ
w (Eq. 1.). Eq. 6 also introduces the parameters of a probabilistic noise model, namely the transition 
probabilities ܲ൫ܥ ൌ ܥ|ܥ ൌ  ൯ that describe how likely an observed label is to take the value C jܥ
if the true label is Ca. Bootkrajang and Kabán (2012) present a method to determine the parameters 
w and ܲ൫ܥ ൌ ܥ|ܥ ൌ   .൯ in an iterative procedure similar to expectation maximisationܥ
Maas et al. (2016) could show that this training procedure can deal with a large amount of random 
noise, resulting in a loss in overall accuracy (OA) of only 4% even if 50% of the training labels 
were wrong. It also improved the OA compared to standard logistic regression by 1-2% in a more 
realistic scenario where the wrong labels form clusters corresponding to larger changes in the map.  
Maas et al. (2017) proposed to use the observed class labels not only for training, but also for 
classification. They built a contextual classifier based on Conditional Random Fields (CRF; Kumar 
& Hebert, 2006). CRF try to maximise the joint posterior of all class labels (collected in a vector C) 
given the observations. In Maas et al. (2017), this joint posterior is factorised according to Eq. 7:  
 

   ܲ൫۱|ܠ, ۱൯ ∝ ∏ ߮ሺܥ, ∏	ሻܠ ߰൫ܥ, ,ܥ ൯,ܠ ∏ ,ܥ൫ߛ ൯ܥ .	    (7) 
 

In Eq. 7, the subscript i denotes a particular pixel and (i, j) denotes a pair of neighbouring pixels on 
the image lattice. The vectors x and C denote the observed image data and class labels from the 
map, respectively. The three terms in Eq. 7 are the association potential ߮ሺܥ,  ሻ, the interactionܠ
potential ߰൫ܥ, ,ܥ ,ܥ൫ߛ ൯ and the temporal association potentialܠ  ൯. The association potential isܥ
based on Eq. 1, trained using the label noise tolerant procedure outlined previously. For the 
interaction potential, we use a model for data-dependent smoothing (Kumar & Hebert, 2006). The 
new temporal association potential ߛ൫ܥ,  ൯ links the observed and the true class labels. It isܥ

determined according to ߛ൫ܥ, ൯ܥ ൌ ൣܲ൫ܥ|ܥ൯൧
ఏ, where ܲ൫ܥ|ܥ൯ can be determined from the 

transition probabilities ܲ൫ܥ|ܥ൯ (Eq. 6) and i is a site-specific weight that is modified in an 
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iterative classification process in which pixels inside compact clusters of potential change receive 
lower weights than pixels that are likely not to have changed (Maas et al., 2017).  
Experiments have shown that considering the temporal association potential increases overall 
accuracy by more than 5% compared to (Maas et al., 2016). 

4. CONCLUSIONS 

This paper has presented some promising strategies for reducing the requirements for manually 
annotated training data. Domain adaptation can help to adapt a classifier trained using a source 
domain to a target domain without additional training data. Leveraging existing maps, classification 
can be carried out without manually annotated training data, and the map can also provide useful 
prior information to improve the classification accuracy.  
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