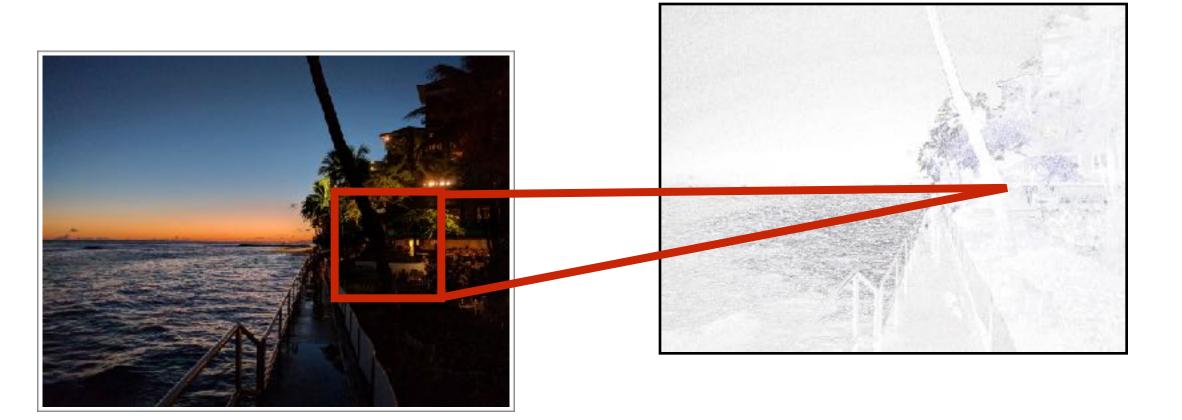
Out with the Old? **Convolutional Neural Networks for Feature** Matching and Visual Localization

Computer Vision and Geometry (CVG) Lab ETH Zürich

Torsten Sattler

Convolutional Neural Networks

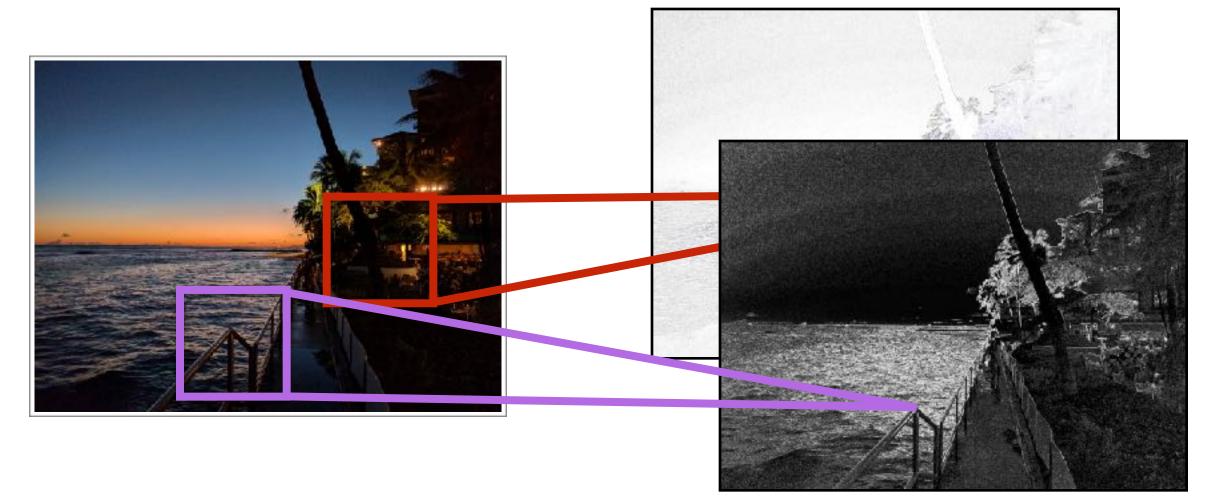


convolutions + non-linearity

Convolutional Neural Networks

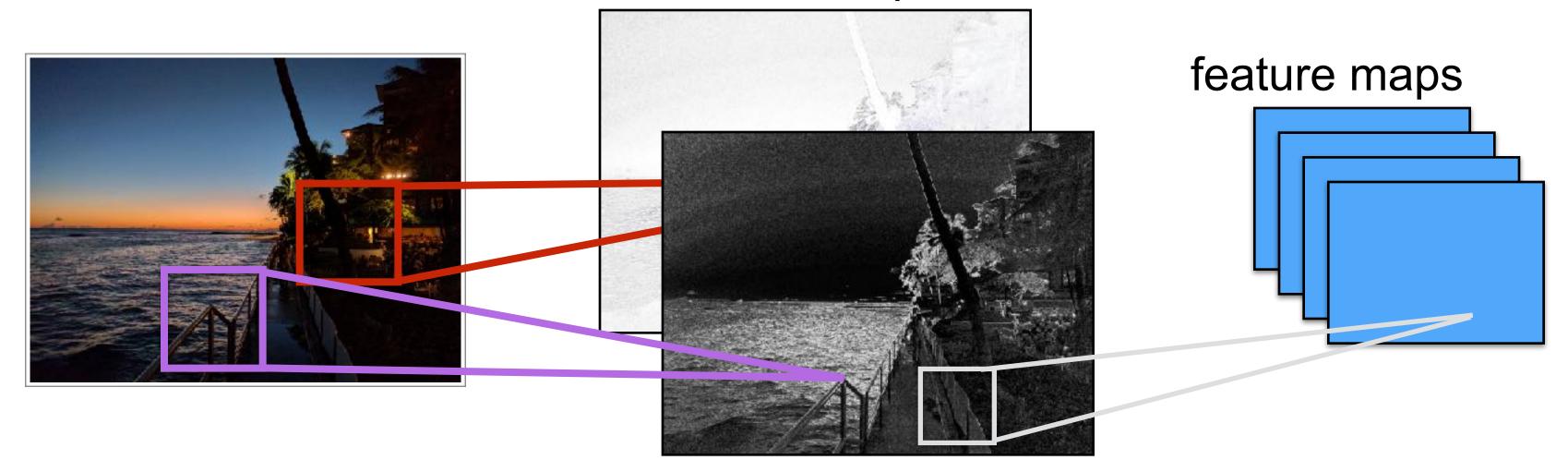
convolutions + non-linearity

Convolutional Neural Networks



convolutions + non-linearity

Convolutional Neural Networks

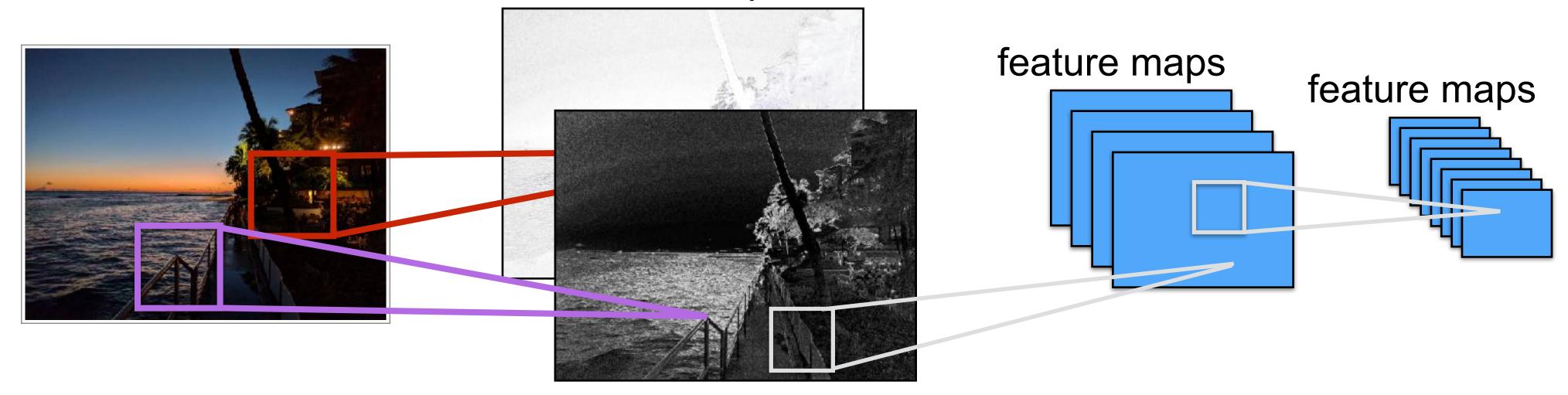


convolutions + non-linearity

Torsten Sattler

Convolutional Neural Networks

convolutions + non-linearity + pooling

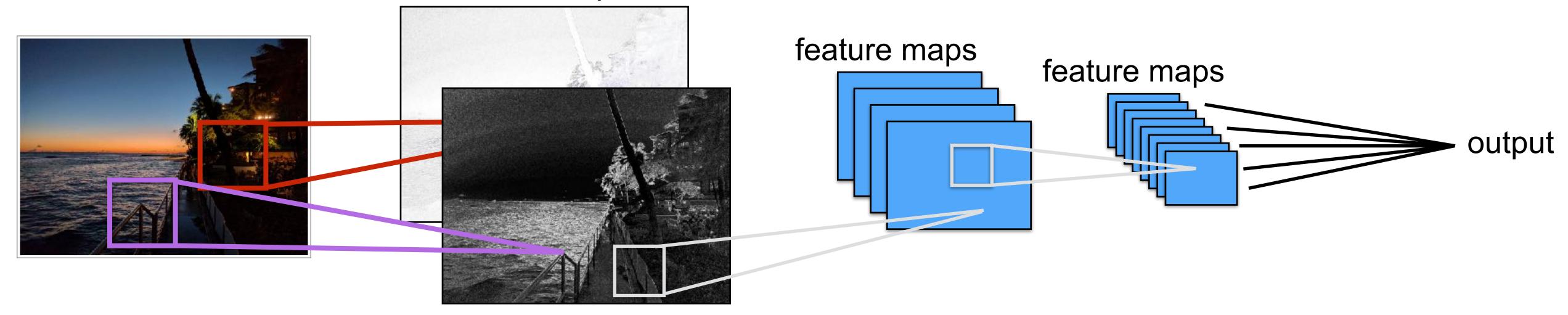


convolutions + non-linearity

Convolutional Neural Networks

convolutions + non-linearity + pooling

convolutions + non-linearity + pooling



convolutions + non-linearity

Convolutional Neural Networks

convolutions + non-linearity + pooling

convolutions + non-linearity + pooling

fully connected layer

convolutions + non-linearity	convolutions + non-linearity + pooling	convolutions + non-linearity + pooling	fully connecte layer
---------------------------------	--	--	-------------------------

Convolutional Neural Networks

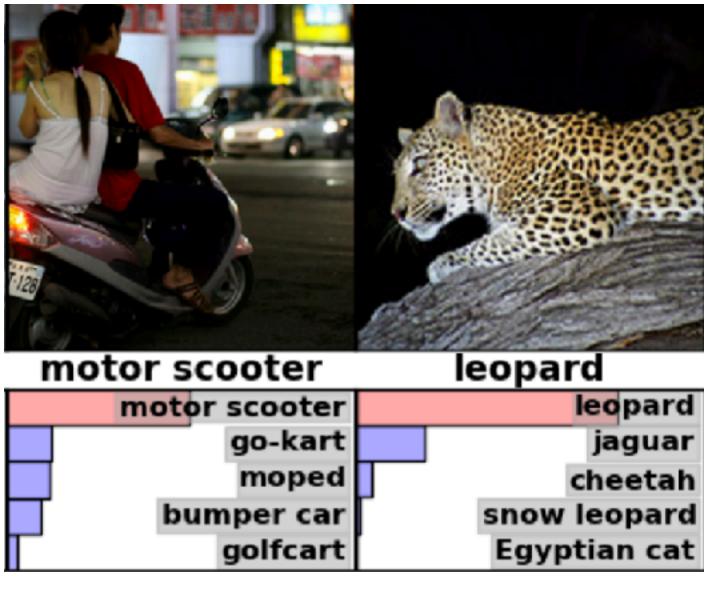
(convolution) parameters learned from data

output

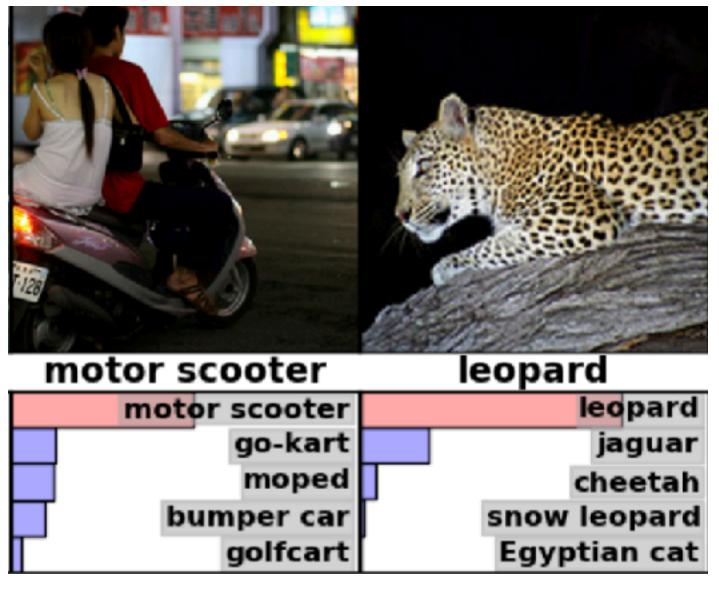
ted

Torsten Sattler

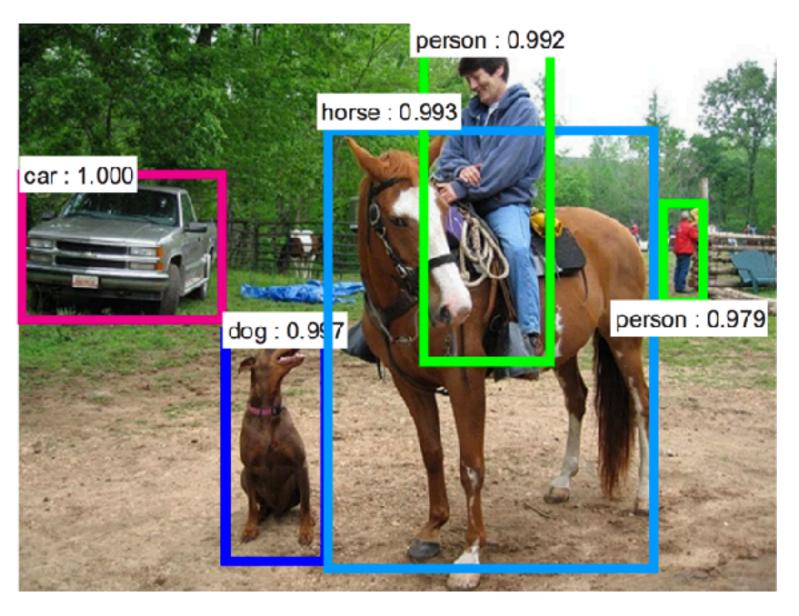
Compand G



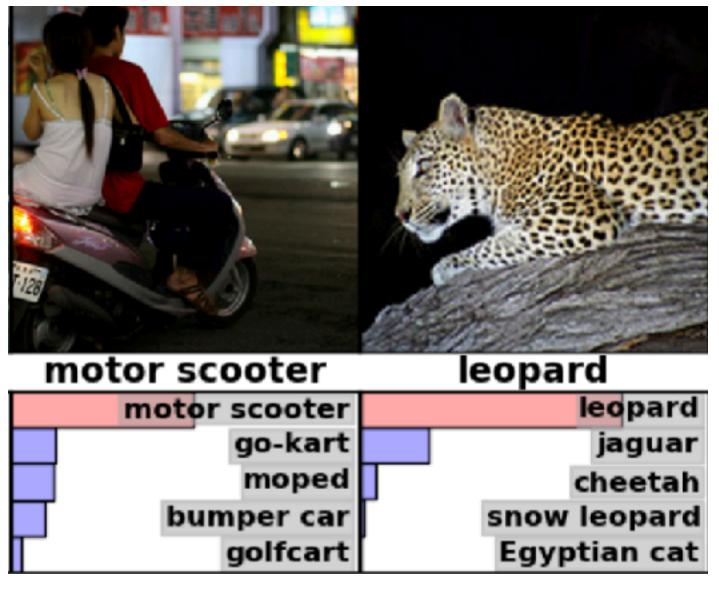
[Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012]



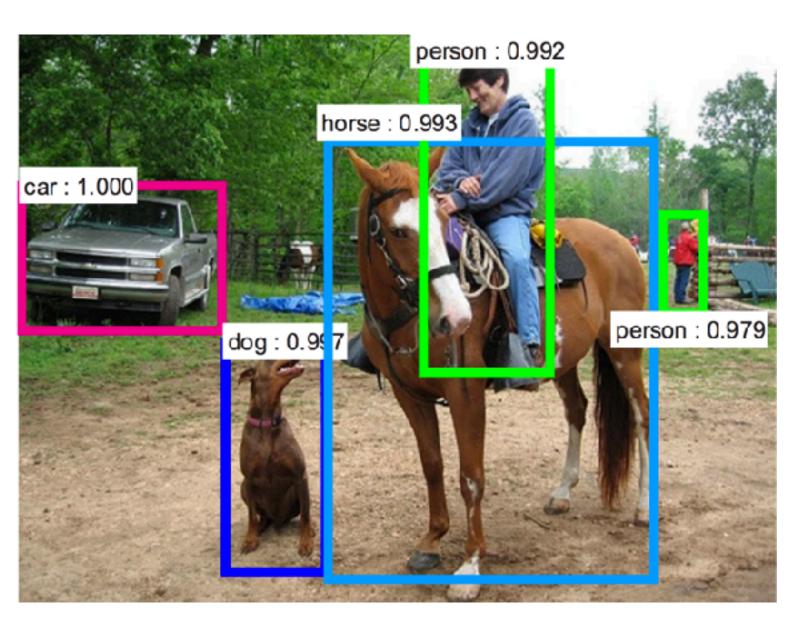
[Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012]



[Ren et al., Faster R-CNN: Towards real-time object detection with region proposal networks, NIPS 2015]

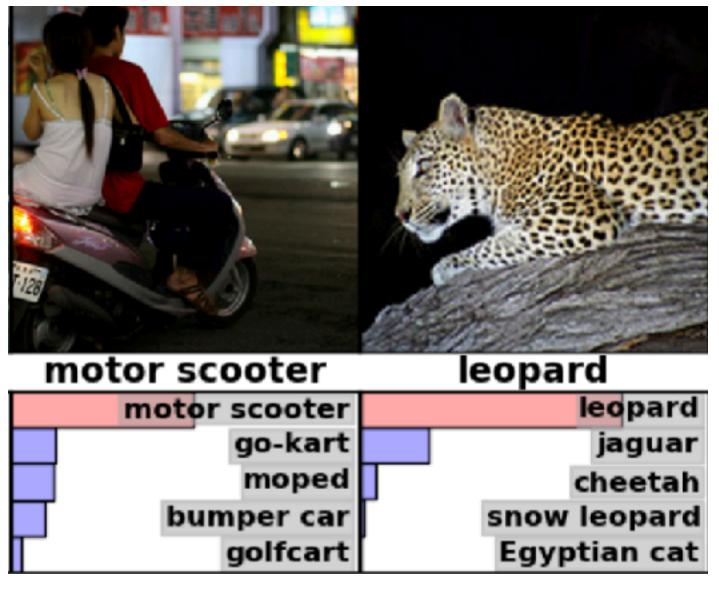


[Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012]

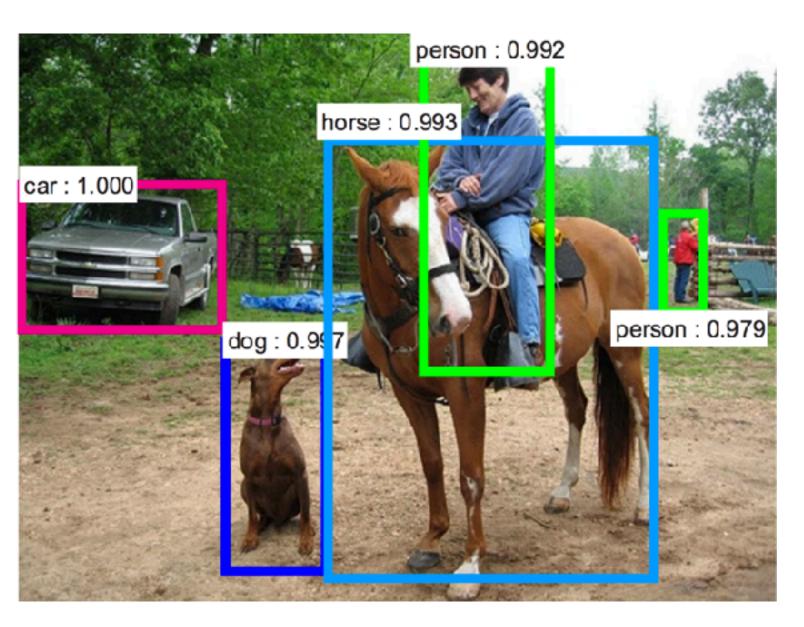


[Ren et al., Faster R-CNN: Towards real-time object detection with region proposal networks, NIPS 2015]

[Pohlen et al., Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes, CVPR 2017]



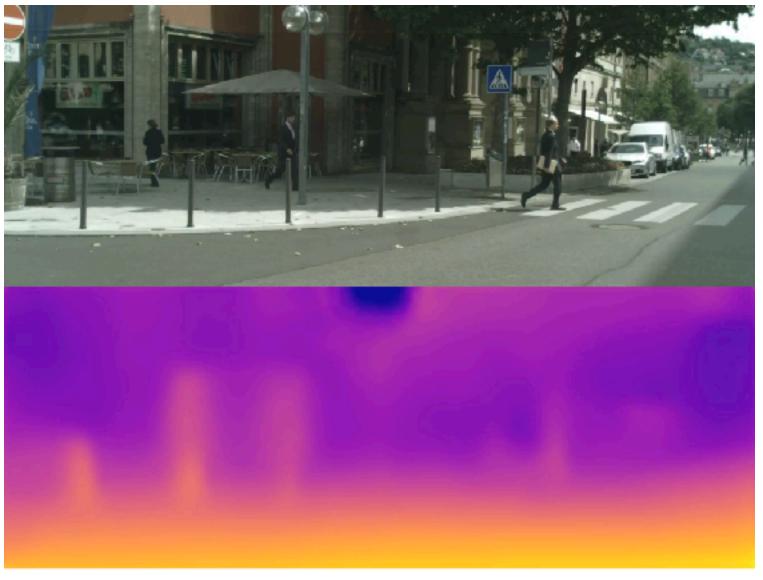
[Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012]



[Ren et al., Faster R-CNN: Towards real-time object detection with region proposal networks, NIPS 2015]



[Pohlen et al., Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes, CVPR 2017]

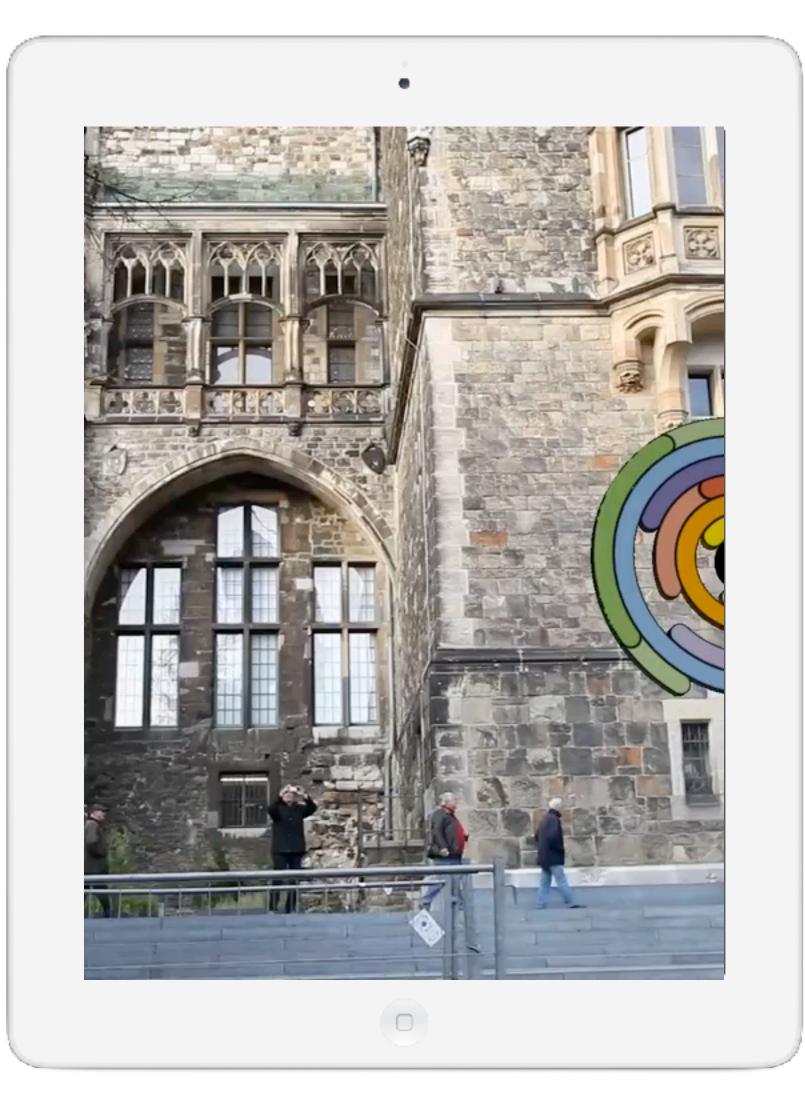


[Zhou et al., Unsupervised Learning of Depth and Ego-Motion from Video, CVPR 2017

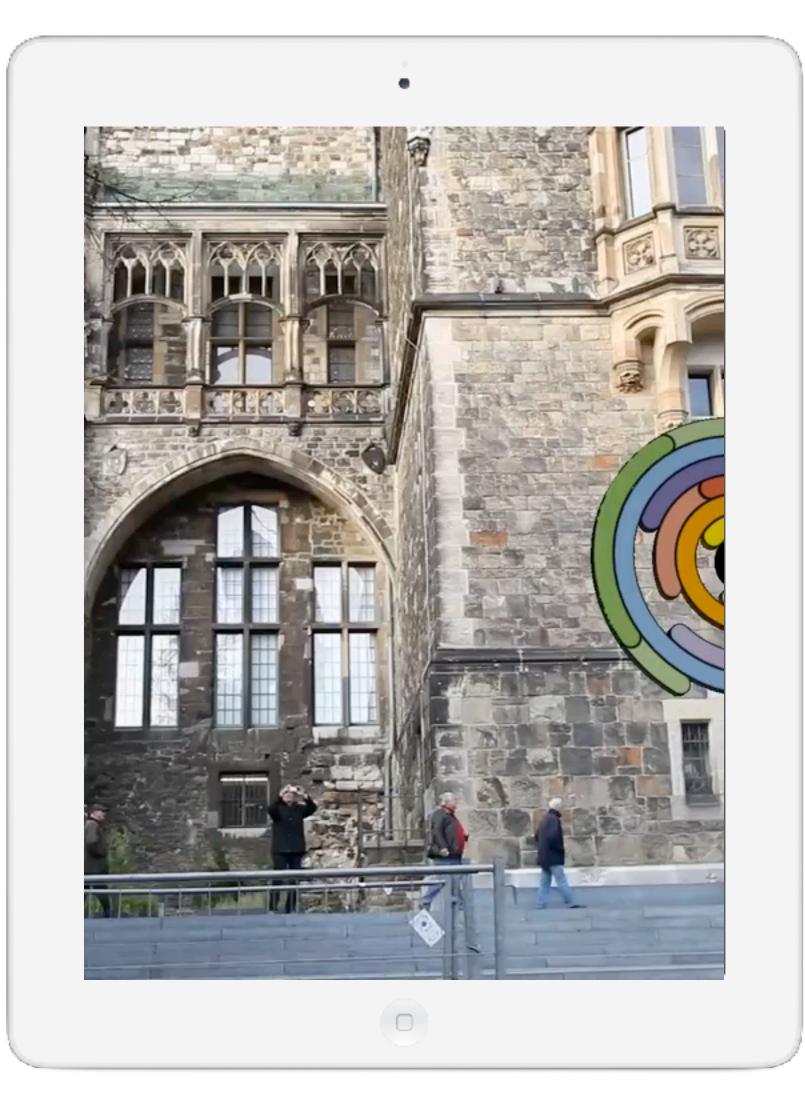
Overview

I. CNNs for Visual Localization

II. CNNs for Feature Detection & Description



[Middelberg, Sattler, Untzelmann, Kobbelt, Scalable 6-DOF Localization on Mobile Devices. ECCV 2014]



[Middelberg, Sattler, Untzelmann, Kobbelt, Scalable 6-DOF Localization on Mobile Devices. ECCV 2014]

Large-scale, Real-Time Visual-Inertial Localization

Simon Lynen, Torsten Sattler, Mike Bosse, Joel Hesch, Marc Pollefeys and Roland Siegwart

[Lynen, Sattler, Bosse, Hesch, Pollefeys, Siegwart, Large-scale Real-Time Visual-Inertial Localization. RSS 2015]

Large-scale, Real-Time Visual-Inertial Localization

Simon Lynen, Torsten Sattler, Mike Bosse, Joel Hesch, Marc Pollefeys and Roland Siegwart

[Lynen, Sattler, Bosse, Hesch, Pollefeys, Siegwart, Large-scale Real-Time Visual-Inertial Localization. RSS 2015]

Offline: Reconstruct scene using Structure-from-Motion

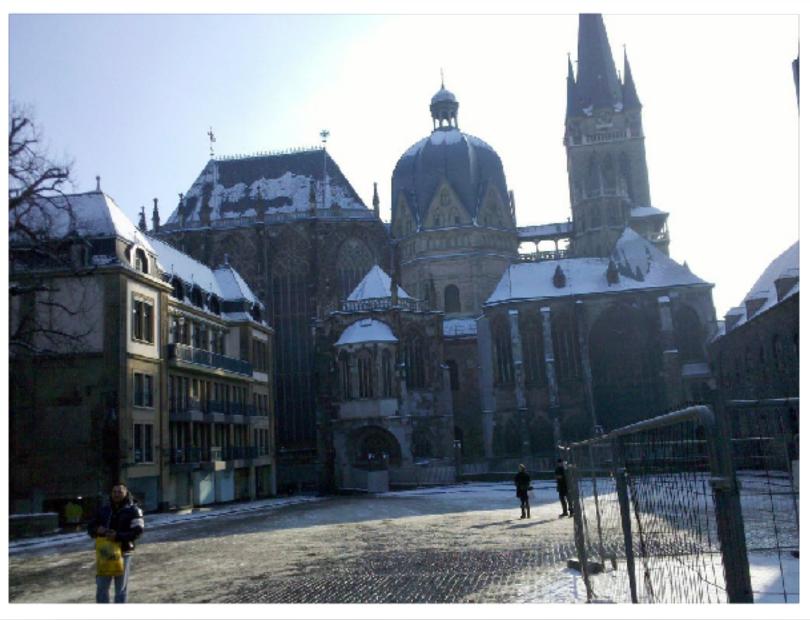
Offline: Reconstruct scene using Structure-from-Motion

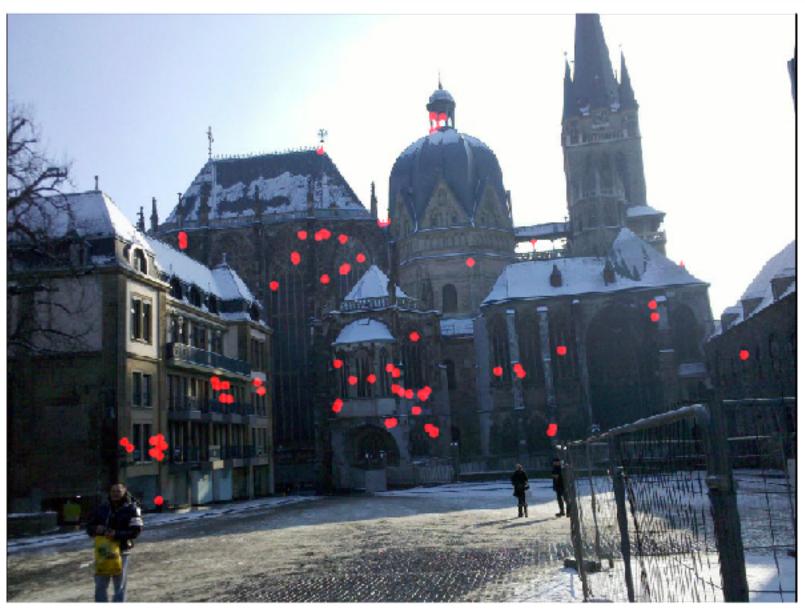
Offline: Reconstruct scene using Structure-from-Motion

ETH zürich

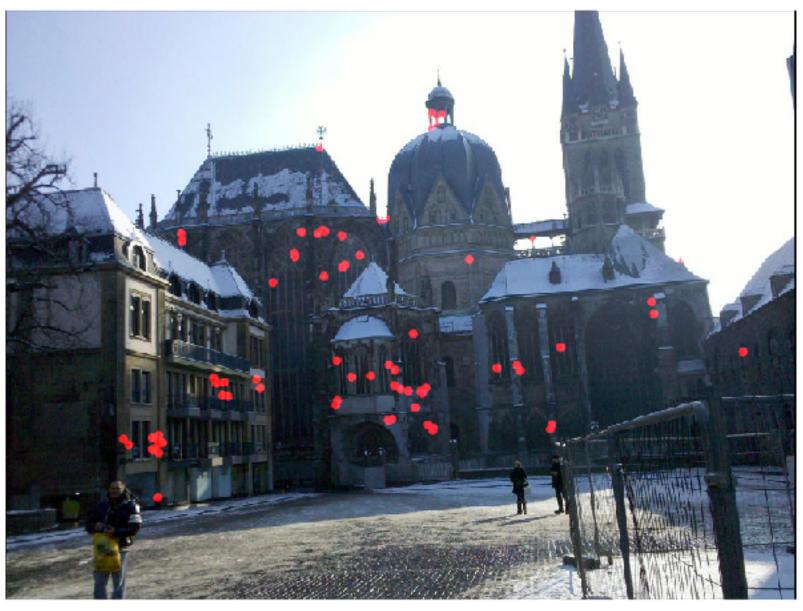
O 3D Point: 3D point + descriptors

Associate each 3D point with local image descriptors (SIFT)



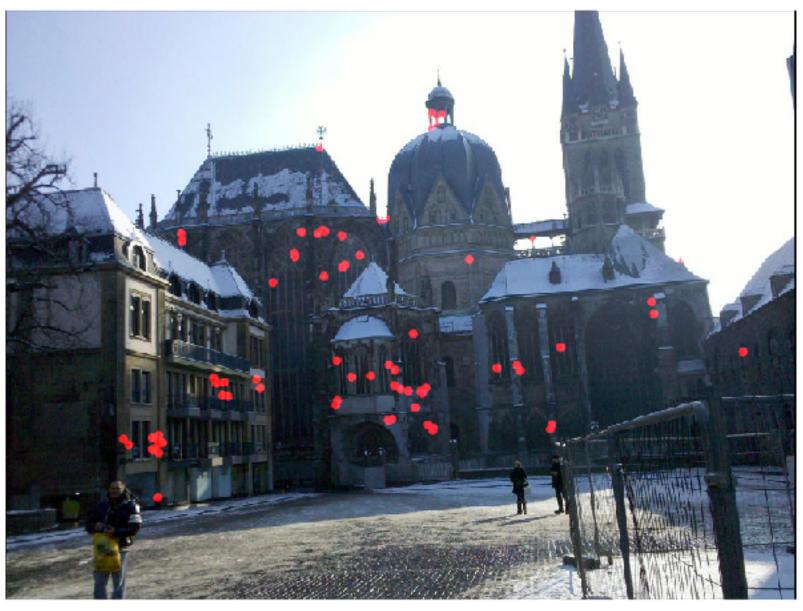


Extract Local Features



Extract Local Features

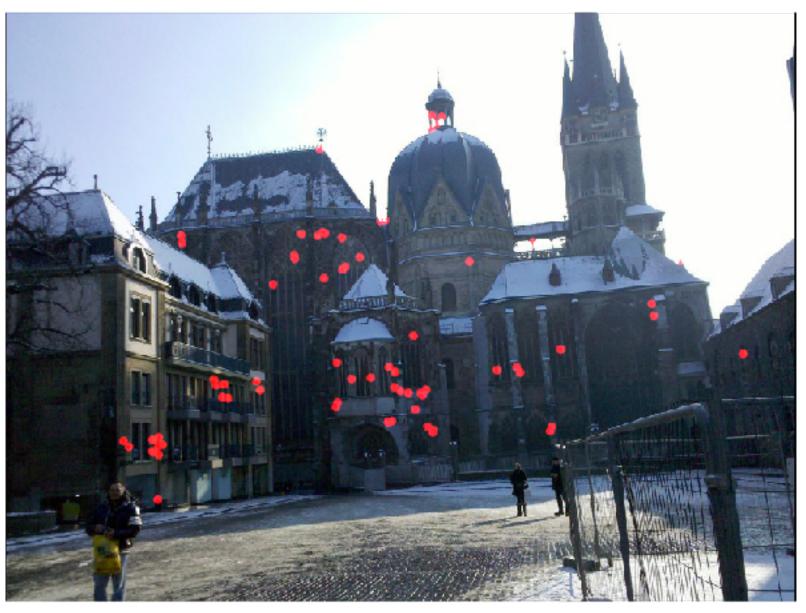
Establish 2D-3D Matches



Extract Local Features

Establish 2D-3D Matches

8

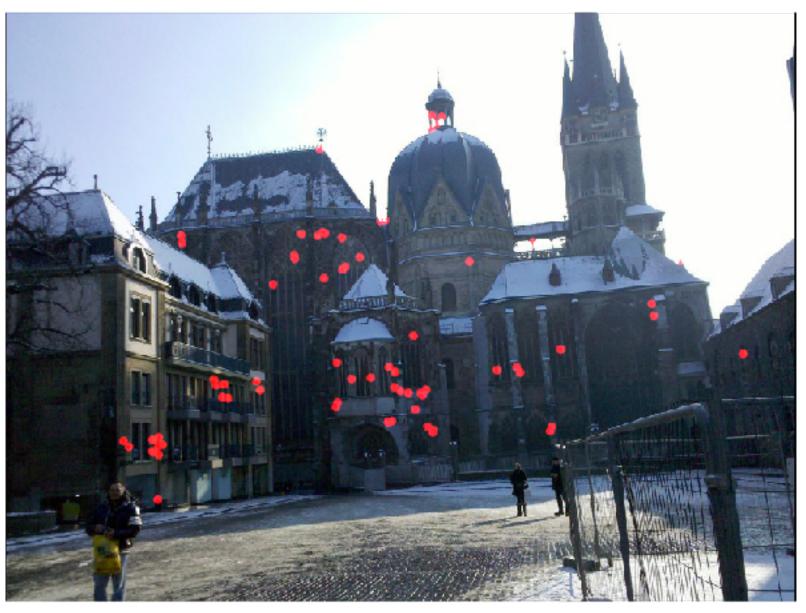


Extract Local Features

Establish 2D-3D Matches

Estimate Camera Pose

8



Extract Local Features

Establish 2D-3D Matches

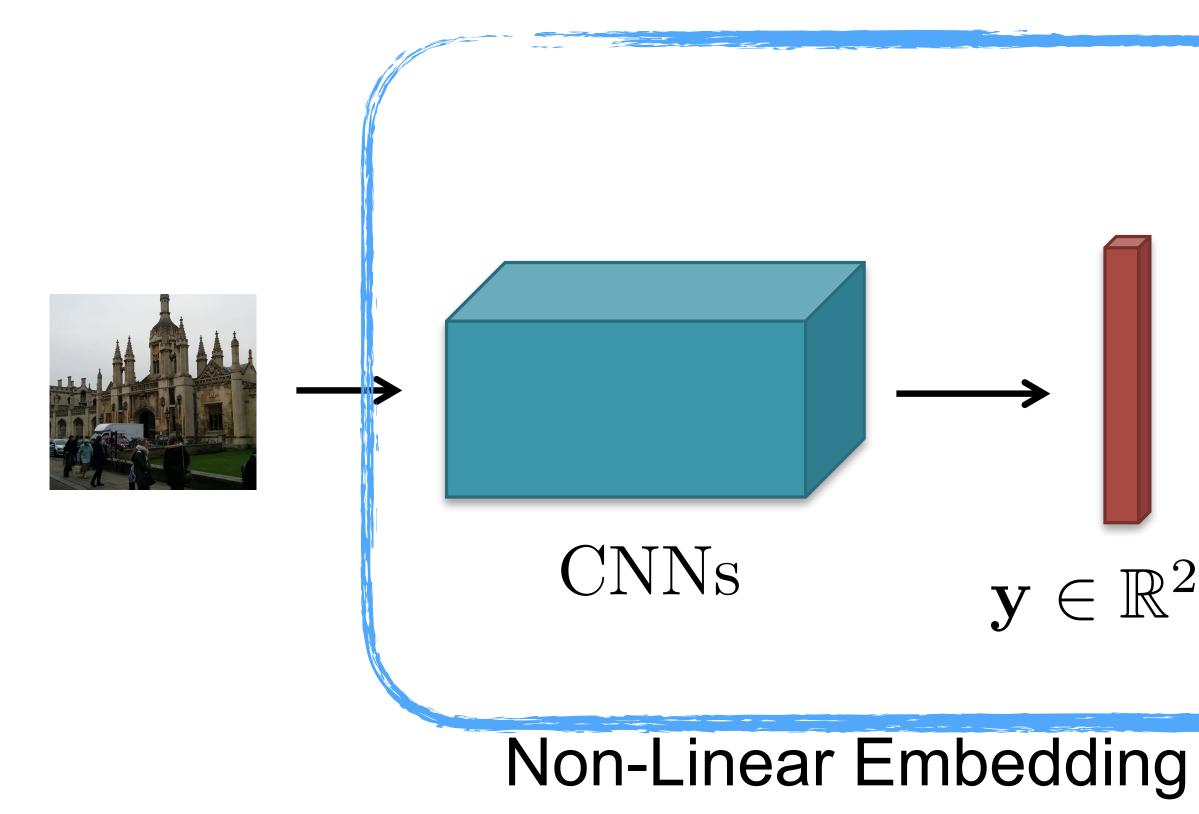
Estimate Camera Pose

Torsten Sattler

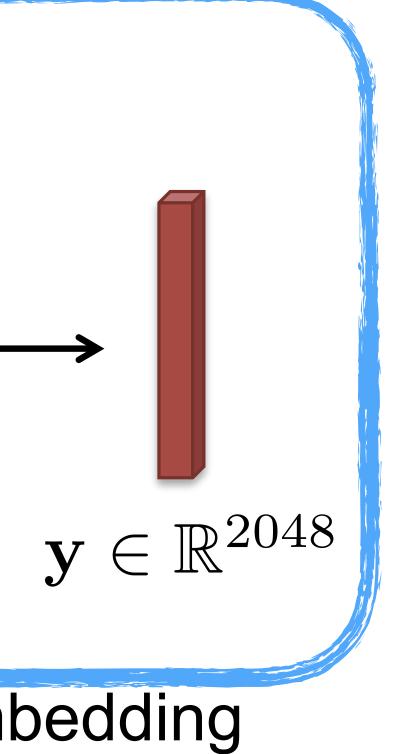
Learning Visual Localization?

8

CNN-based Localization (PoseNet)

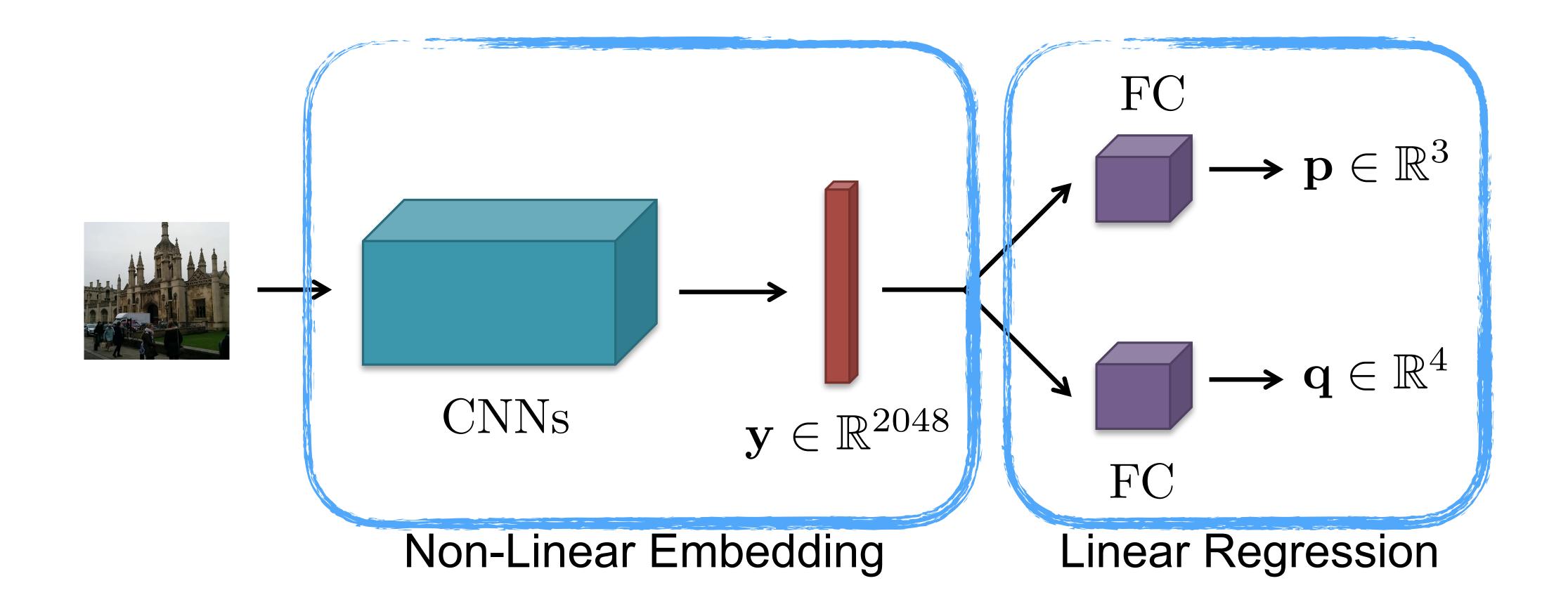


[Kendall, Grimes, Cipola, PoseNet: A convolutional network for real-time 6-dof camera relocalization. ICCV 2015] Torsten Sattler 9



Computer Vision

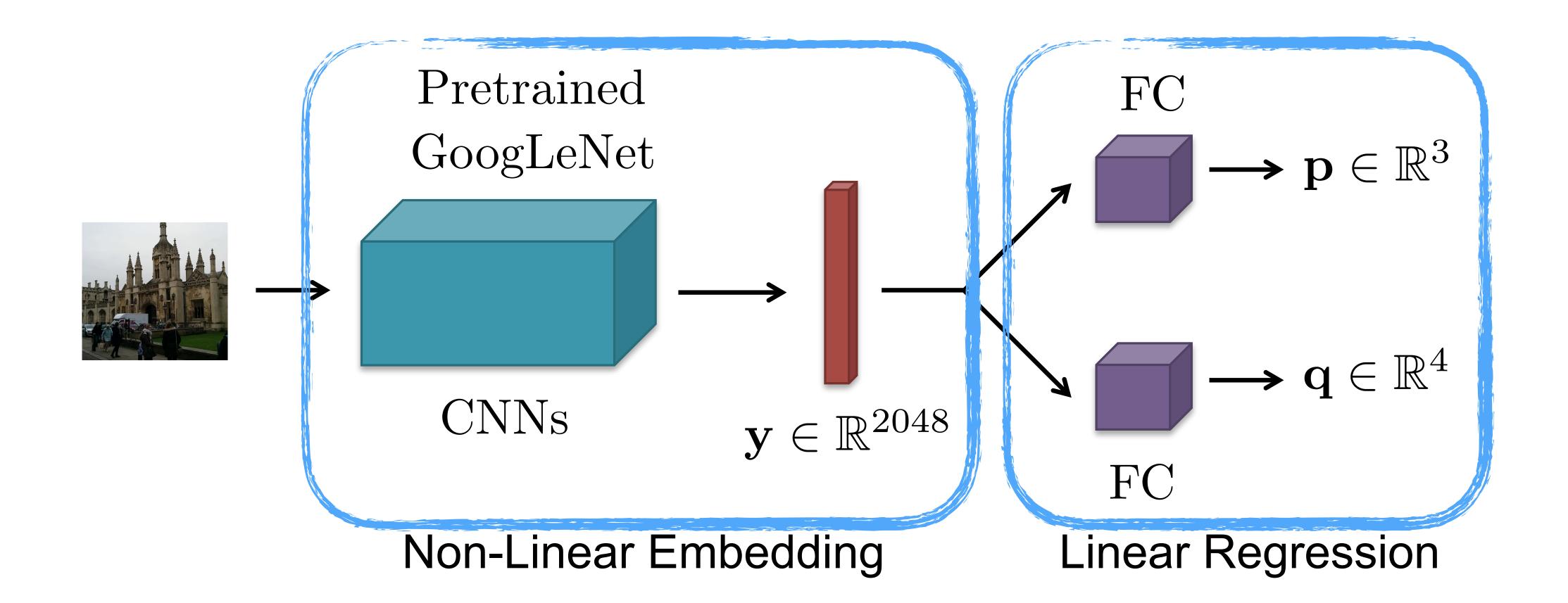
CNN-based Localization (PoseNet)



[Kendall, Grimes, Cipola, PoseNet: A convolutional network for real-time 6-dof camera relocalization. ICCV 2015] Torsten Sattler

Computer Vision

CNN-based Localization (PoseNet)

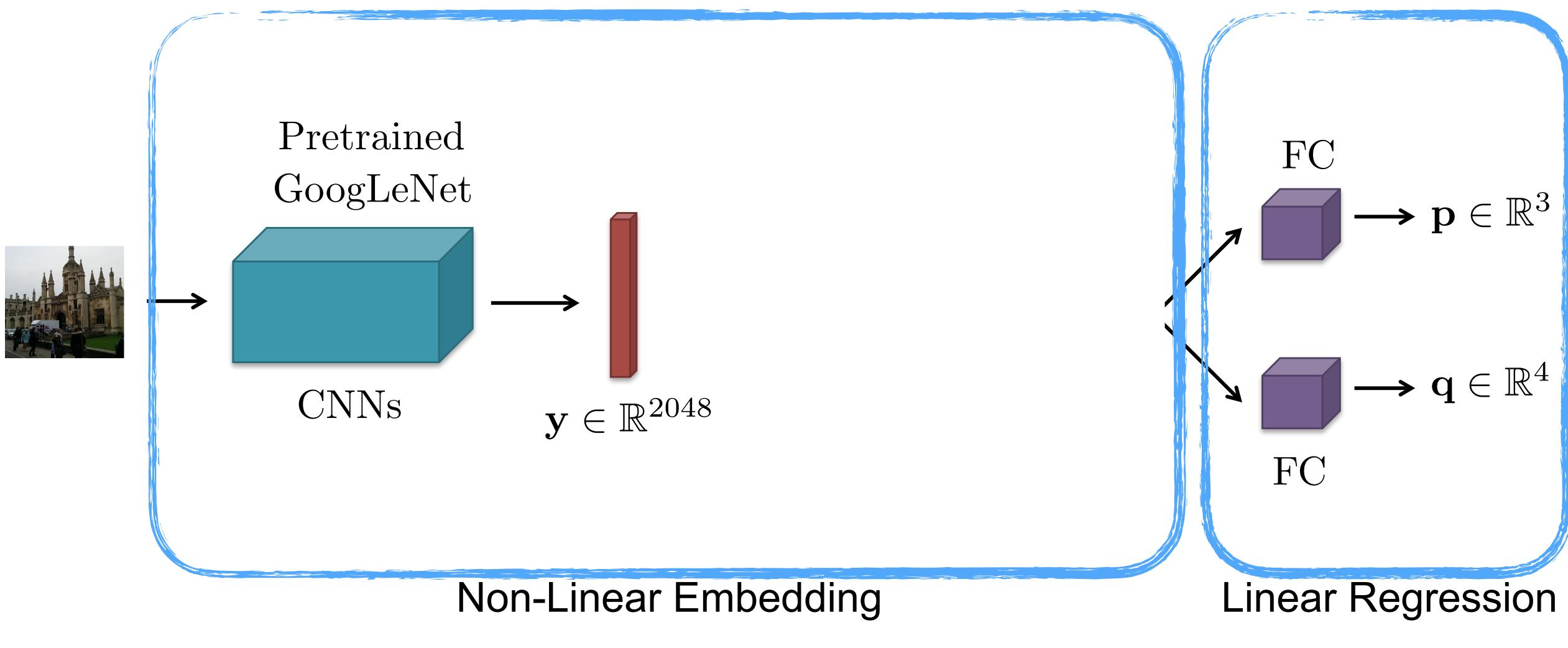


[Kendall, Grimes, Cipola, PoseNet: A convolutional network for real-time 6-dof camera relocalization. ICCV 2015]

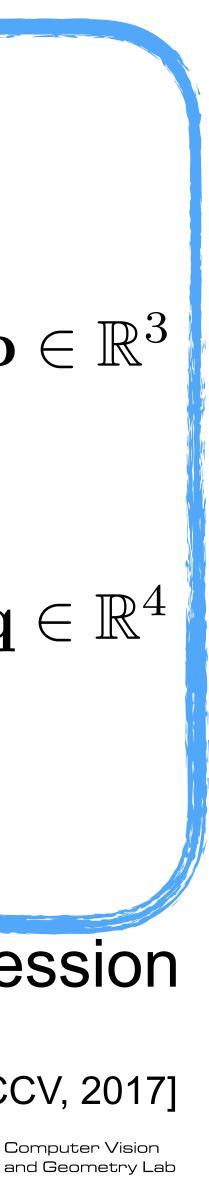
Torsten Sattler 9

Computer Vision

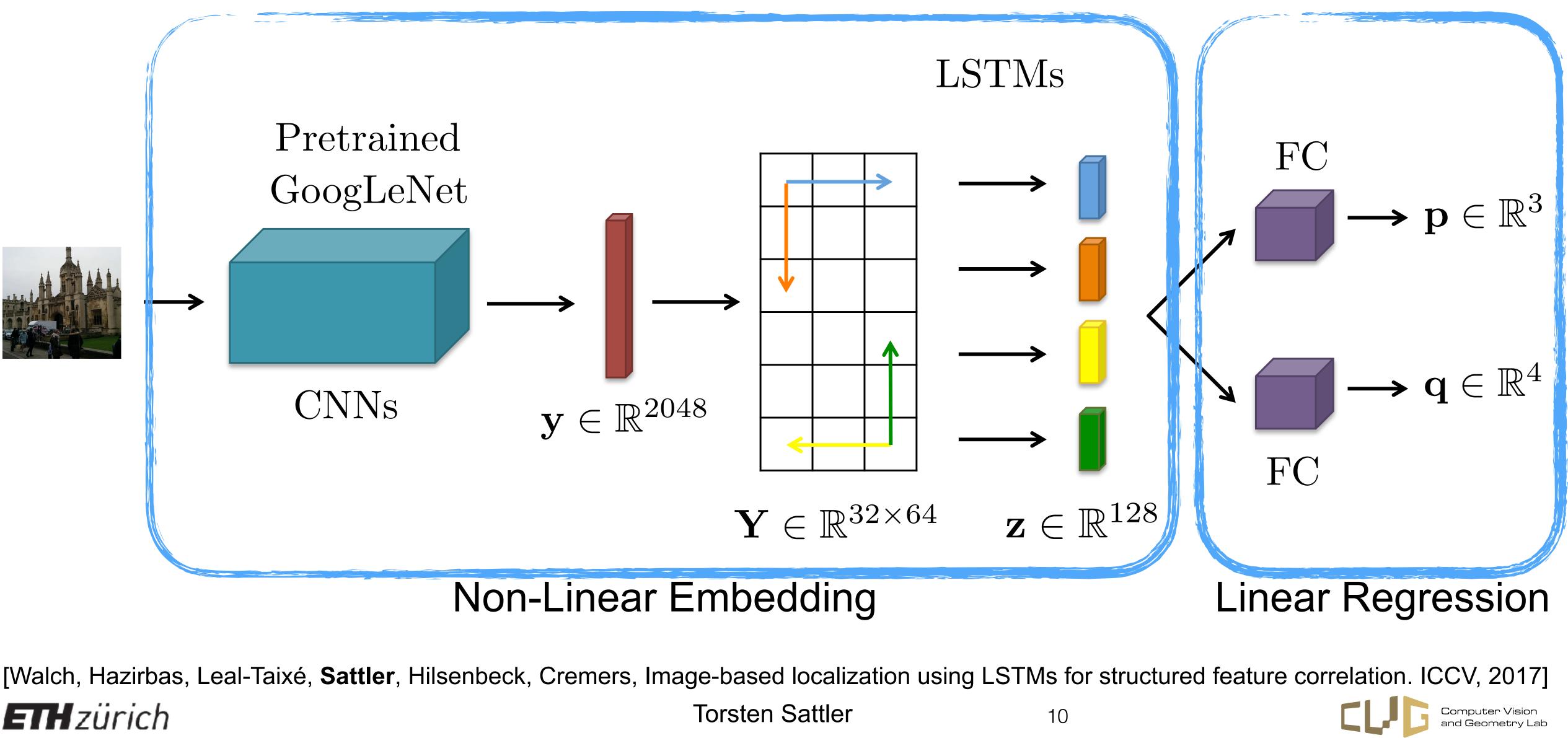
CNN-based Localization



[Walch, Hazirbas, Leal-Taixé, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017] **ETH** zürich Torsten Sattler 10



CNN-based Localization



ETH zürich

Training PoseNet

• Input: Images I_i with known 6DOF camera pose $(\hat{\mathbf{c}}_i, \hat{\mathbf{q}}_i)$

[Kendall, Grimes, Cipola, PoseNet: A convolutional network for real-time 6-dof camera relocalization. ICCV 2015] [Kendall, Cipola, Geometric loss functions for camera pose regression with deep learning. CVPR 2017]

Training PoseNet

- Input: Images I_i with known 6DOF camera pose $(\hat{\mathbf{c}}_i, \hat{\mathbf{q}}_i)$ Non-geometric loss function: $_{2}+\beta\cdot\left\|\mathbf{q}_{i}-\frac{\hat{\mathbf{q}}_{i}}{\|\hat{\mathbf{q}}_{i}\|}\right\|_{2}$

$$L_i = \|\mathbf{c}_i - \hat{\mathbf{c}}_i\|_2$$

[Kendall, Grimes, Cipola, PoseNet: A convolutional network for real-time 6-dof camera relocalization. ICCV 2015] [Kendall, Cipola, Geometric loss functions for camera pose regression with deep learning. CVPR 2017]

Training PoseNet

- Input: Images I_i with known 6DOF camera pose $(\hat{\mathbf{c}}_i, \hat{\mathbf{q}}_i)$
- Non-geometric loss function:

$$L_i = \|\mathbf{c}_i - \hat{\mathbf{c}}_i\|_2$$

 Geometric loss function: Min points visible in image

> [Kendall, Grimes, Cipola, PoseNet: A convolutional network for real-time 6-dof camera relocalization. ICCV 2015] [Kendall, Cipola, Geometric loss functions for camera pose regression with deep learning. CVPR 2017]

$_{2}+\beta \cdot \left\| \mathbf{q}_{i}-\frac{\hat{\mathbf{q}}_{i}}{\left\| \hat{\mathbf{q}}_{i} \right\|} \right\|_{2}$

Geometric loss function: Minimize re-projection error of 3D

Measure: Median position [m] / orientation [deg] error

[Walch, Hazirbas, Leal-Taixé, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017] **ETH** zürich Torsten Sattler 12

Measure: Median position [m] / orientation [deg] error

original DagoNlat	1.92m	2.31m	1.46m	2.65m	0.32m	0.47m	0.29m	0.48m	0.47m	0.59m	0.47m
original PoseNet	5.400	5.38°	08.08°	8.480	8.120	14.40	12.00	7.680	8.420	8.640	13.80

Cambridge Landmarks (outdoor)

[Walch, Hazirbas, Leal-Taixé, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017] **ETH** zürich Torsten Sattler 12

7 Scenes (indoor)

Measure: Median position [m] / orientation [deg] error

original PoseNet	1.92m	2.31m	1.46m	2.65m	0.32m	0.47m	0.29m	0.48m	0.47m	0.59m	0.47m
	5.400	5.380	8.080	8.48°	8.120	14.40	12.00	7.680	8.420	8.640	13.80
PoseNet + LSTM	0.99m	1.51m	1.18m	1.52m	0.24m	0.34m	0.21m	0.30m	0.33m	0.37m	0.40m
	3.65°	4.290	7.440	6.680	5.770	11.90	13.70	8.080	7.000	8.830	13.70

Cambridge Landmarks (outdoor)

[Walch, Hazirbas, Leal-Taixé, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017] **ETH** zürich Torsten Sattler 12

7 Scenes (indoor)



Measure: Median position [m] / orientation [deg] error

original PoseNet	1.92m 5.400	2.31m 5.380	1.46m 8.080	2.65m 8.48°	0.32m 8.120	0.47m 14.40	0.29m 12.00	0.48m 7.680	0.47m 8.420	0.59m 8.640	0.47m 13.80
PoseNet + LSTM	0.99m 3.65°	1.51m 4.29°	1.18m 7.440	1.52m 6.680	0.24m 5.770	0.34m 11.90	0.21m 13.70	0.30m 8.080	0.33m 7.000	0.37m 8.830	0.40m 13.70
PoseNet + geometric loss	0.88m 1.040	3.20m 3.290	0.88m 3.780	1.57m 3.32°	0.13m 4.480	0.27m 11.30	0.17m 13.00	0.19m 5.550	0.26m 4.750	0.23m 5.350	0.35m 12.40

Cambridge Landmarks (outdoor)

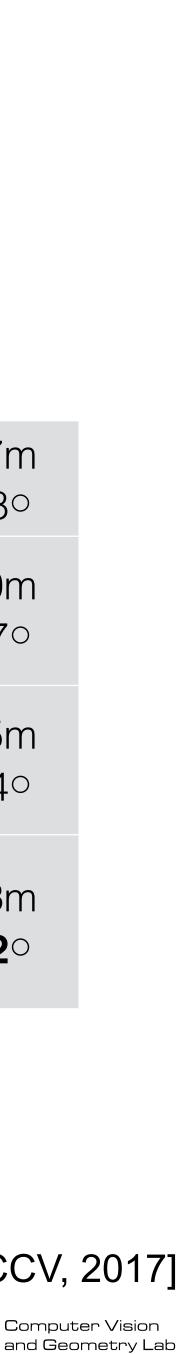
[Walch, Hazirbas, Leal-Taixé, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017] **ETH** zürich Torsten Sattler 12

7 Scenes (indoor)

Measure: Median position [m] / orientation [deg] error

[Sattler et al., PAMI 2017]	0.42m 0.55°	0.44m 1.01 ° bridge L	0.12m 0.400	0.19m 0.540	0.04m 1.96°	0.03m 1.530	0.02m 1.45°	0.09m 3.61 °	0.08m 3.200	0.07m 3.370	0.03m 2.220
PoseNet +	0.88m	3.20m	0.88m	1.57m	0.13m	0.27m	0.17m	0.19m	0.26m	0.23m	0.35m
geometric loss	1.040	3.290	3.780	3.320	4.480	11.30	13.00	5.55°	4.750	5.350	12.40
PoseNet + LSTM	0.99m	1.51m	1.18m	1.52m	0.24m	0.34m	0.21m	0.30m	0.33m	0.37m	0.40m
	3.65°	4.29°	7.440	6.680	5.770	11.90	13.70	8.080	7.000	8.830	13.70
original PoseNet	1.92m	2.31m	1.46m	2.65m	0.32m	0.47m	0.29m	0.48m	0.47m	0.59m	0.47m
	5.400	5.380	8.080	8.480	8.120	14.40	12.00	7.68°	8.420	8.640	13.80

[Walch, Hazirbas, Leal-Taixé, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017] **ETH** zürich Torsten Sattler 12



Results on Dubrovnik dataset:

PoseNet + geometric loss

	Quantile Errors [m]]
25%	50%	75%
_	7.9	_

Results on Dubrovnik dataset:

PoseNet + geometric loss

Image Retrieval (No Pose **Estimation**)

Quantile Errors [m]					
25%	50%	75%			
_	7.9	_			
0.9	2.9	9.0			

Results on Dubrovnik dataset:

PoseNet + geometric loss

Image Retrieval (No Pose **Estimation**)

[Sattler et al., PAMI 2017]

Quantile Errors [m]					
25%	50%	75%			
-	7.9	_			
0.9	2.9	9.0			
0.5	1.3	5.0			

Results on Dubrovnik dataset:

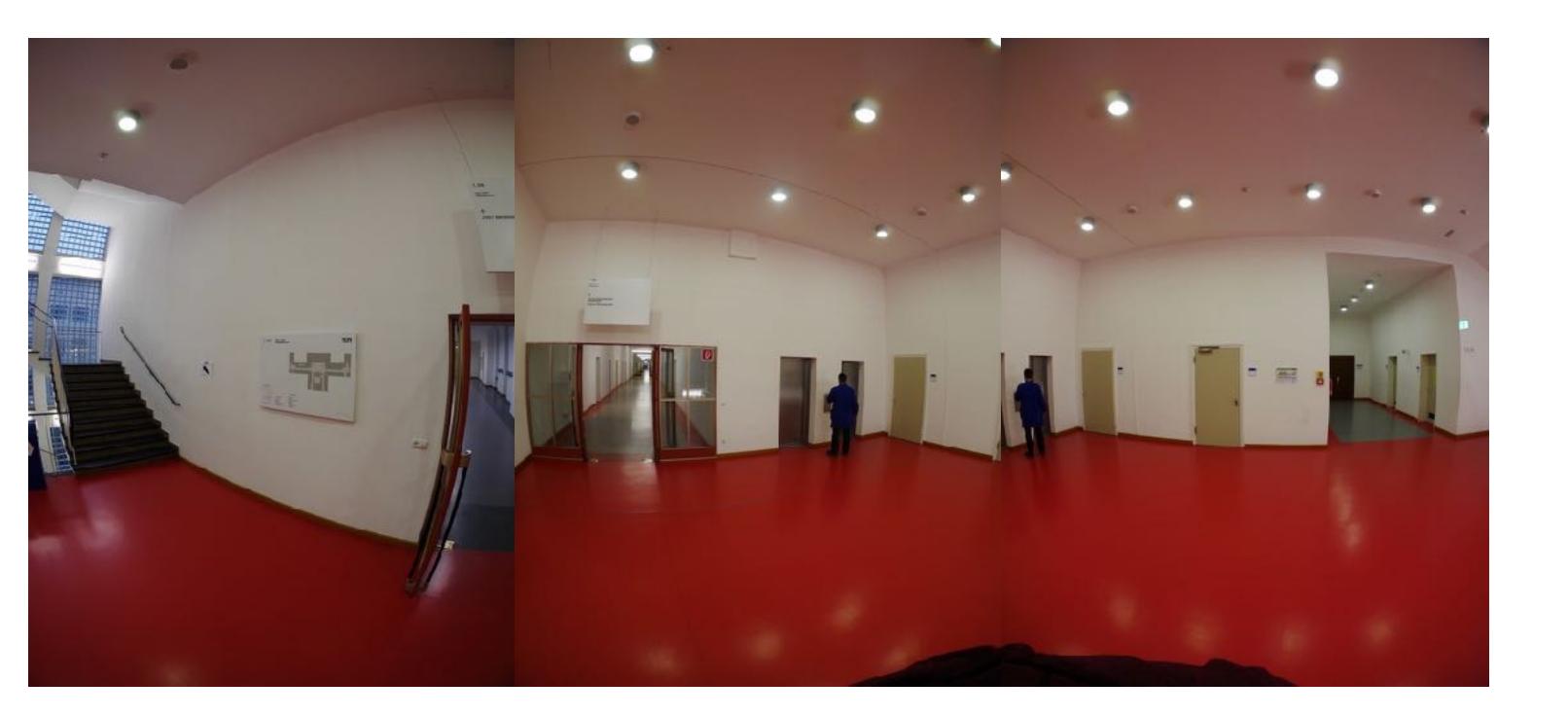
PoseNet + geometric loss

Image Retrieval (**No Pose Estimation**)

[Sattler et al., PAMI 2017]

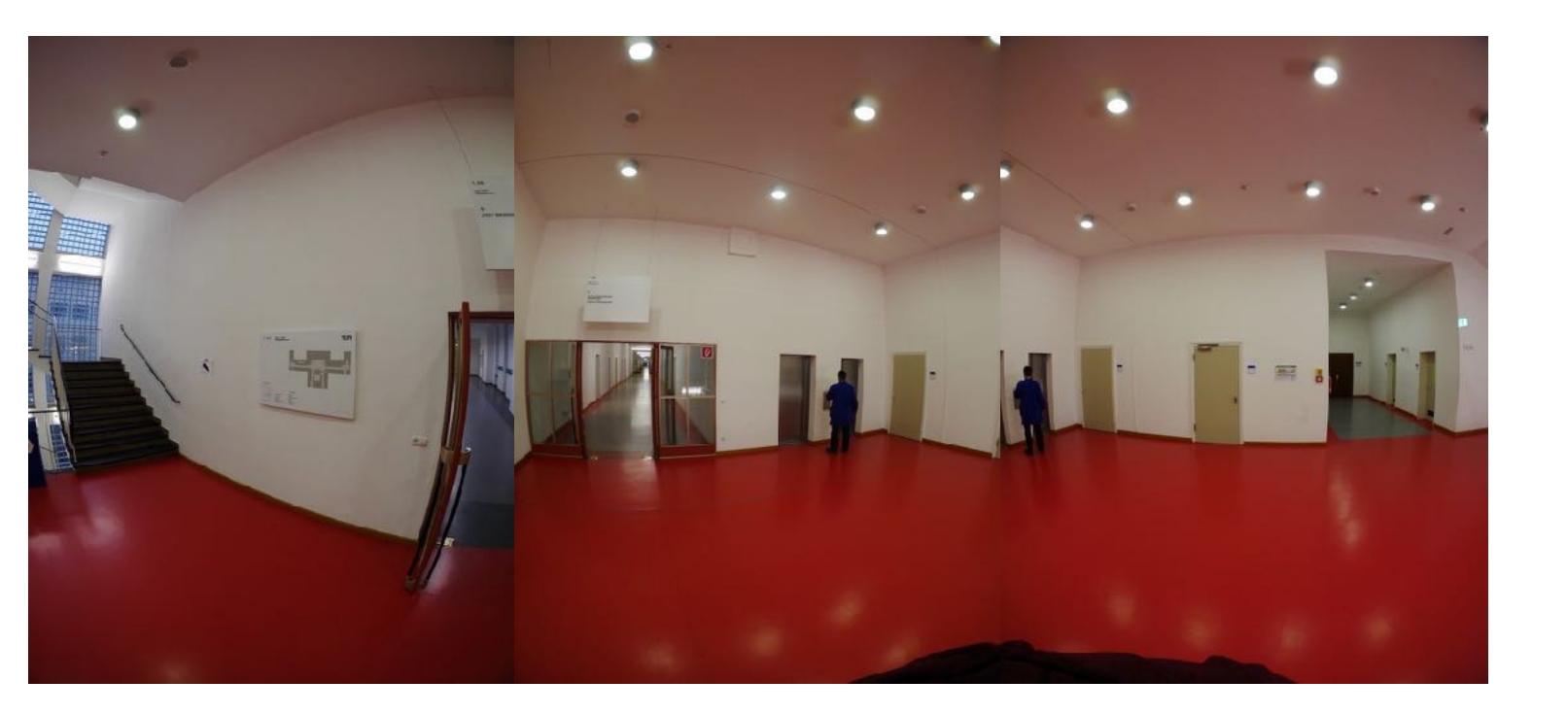
[Zeisl et al., ICCV 2015]

Quantile Errors [m]					
25%	50%	75%			
_	7.9	_			
0.9	2.9	9.0			
0.5	1.3	5.0			
0.2	0.6	2.1			



[Walch, Hazirbas, Leal-Taixé, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017] **ETH** zürich Torsten Sattler 14

A Hard Example



[Walch, Hazirbas, Leal-Taixé, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017] **ETH** zürich Torsten Sattler 14

A Hard Example

original PoseNet	1.87m, 6.140
PoseNet + LSTM	1.31 m, 2.79 0
[Sattler et al., PAMI 2017]	SfM failed



6D pose space

My Take

PoseNet + variants learn mapping from visual appearance to

- 6D pose space
- In theory: Possible to learn camera pose regression (for known camera intrinsics)

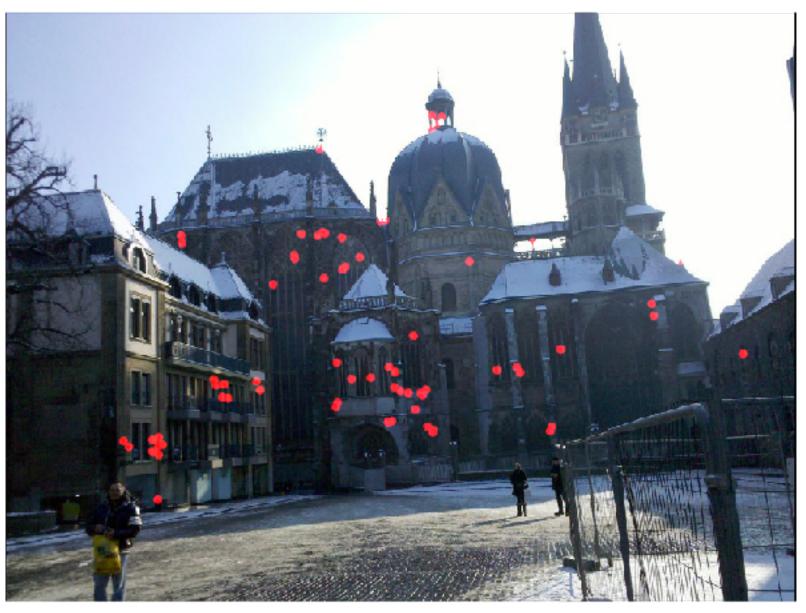
PoseNet + variants learn mapping from visual appearance to

- 6D pose space
- In theory: Possible to learn camera pose regression (for known camera intrinsics)
- In practice: Probably not enough training data to learn mapping that generalizes away from training data

PoseNet + variants learn mapping from visual appearance to

- PoseNet + variants learn mapping from visual appearance to 6D pose space
- In theory: Possible to learn camera pose regression (for known camera intrinsics)
- In practice: Probably not enough training data to learn mapping that generalizes away from training data Promising results for hard scenes in which feature-based
- approaches fail

- PoseNet + variants learn mapping from visual appearance to 6D pose space
- In theory: Possible to learn camera pose regression (for known camera intrinsics)
- In practice: Probably not enough training data to learn mapping that generalizes away from training data Promising results for hard scenes in which feature-based
- approaches fail
- Why learn full pose estimation pipeline?

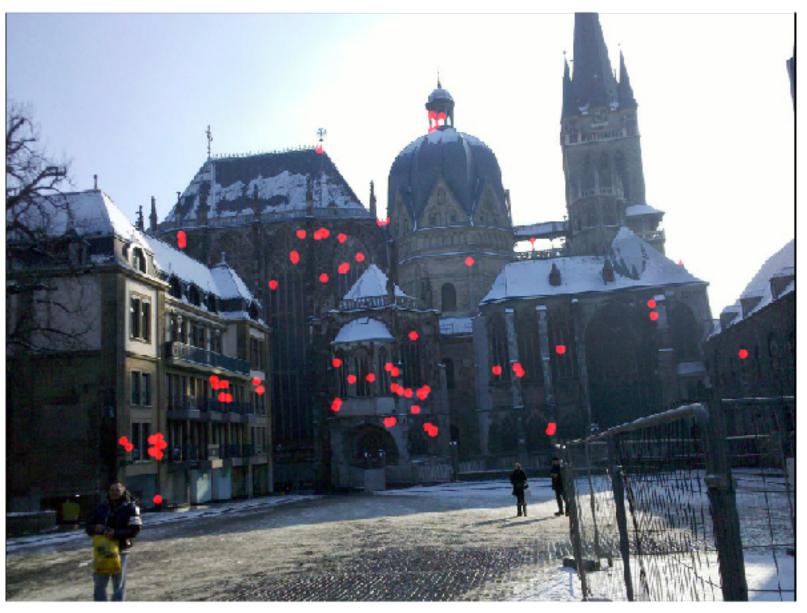


Extract Local Features

Establish 2D-3D Matches

Estimate Camera Pose

Torsten Sattler



Extract Local Features

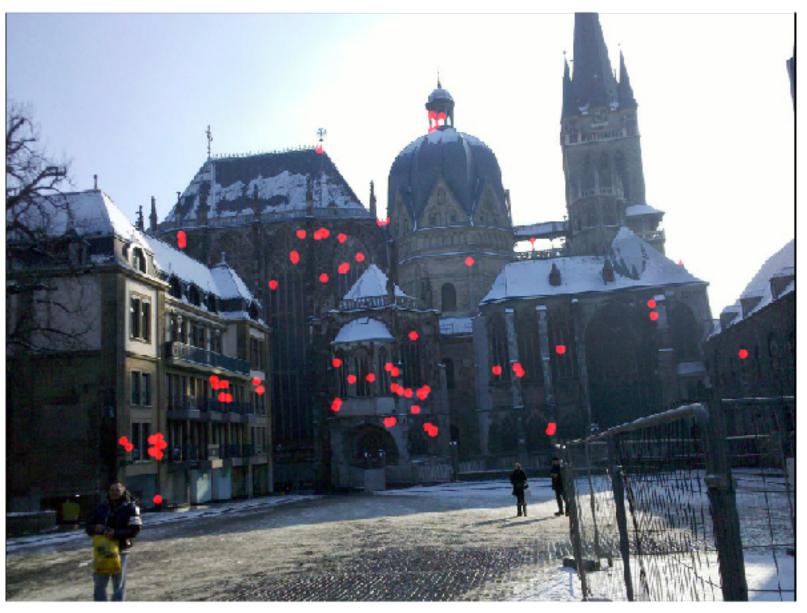
Establish 2D-3D Matches

Estimate Camera Pose

well-understood problem

Torsten Sattler

199 - A.



Extract Local Features

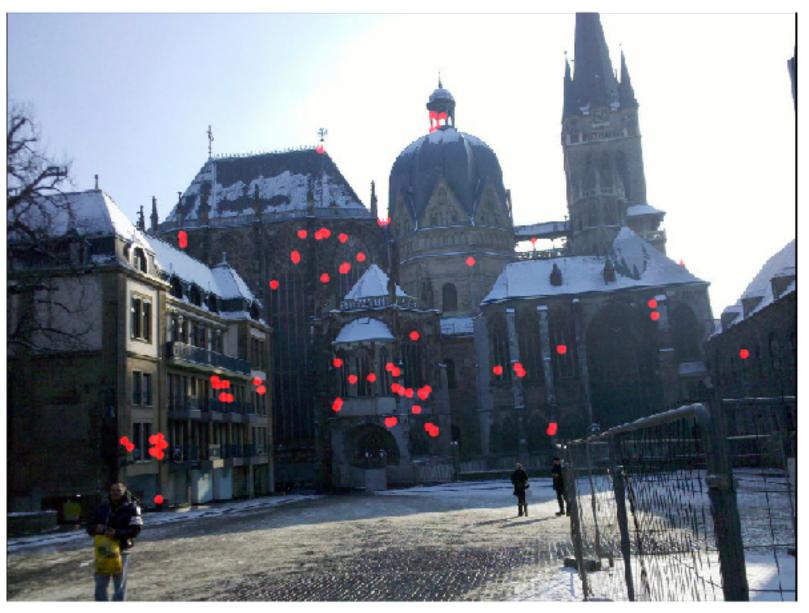
Establish 2D-3D Matches

Estimate Camera Pose

well-understood problem

Torsten Sattler

120



Extract Local Features

Establish 2D-3D Matches

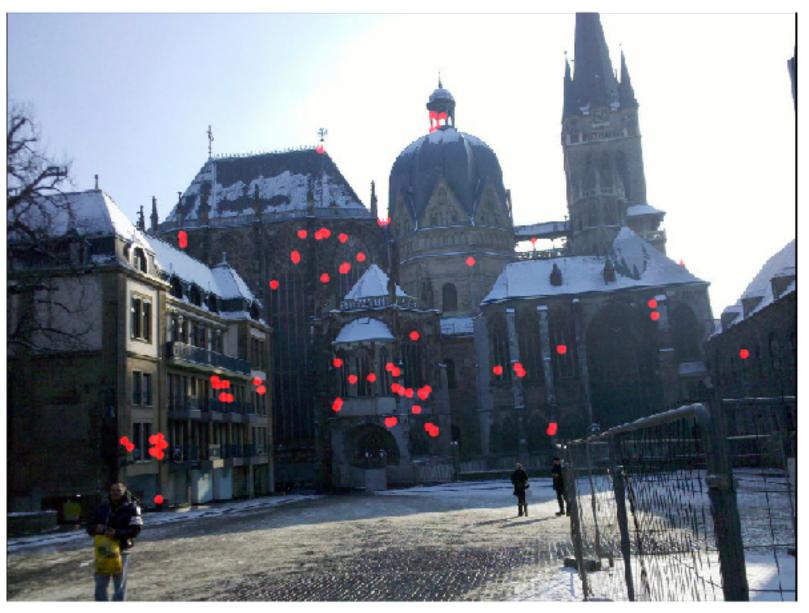
Estimate Camera Pose

nearest neighbor search

well-understood problem

Torsten Sattler

120 1



Extract Local Features

Establish 2D-3D Matches

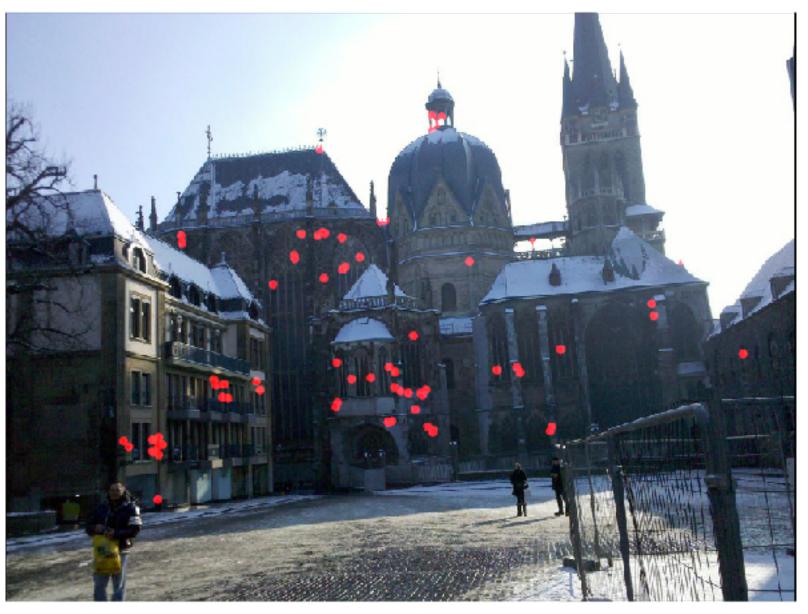
Estimate Camera Pose

nearest neighbor search

well-understood problem

Torsten Sattler

120 1



Extract Local Features

Establish 2D-3D Matches

Estimate Camera Pose

nearest neighbor search

well-understood problem

Torsten Sattler

120 1

Overview

CNNs for Visual Localization Ι.

II. CNNs for Feature Detection & Description

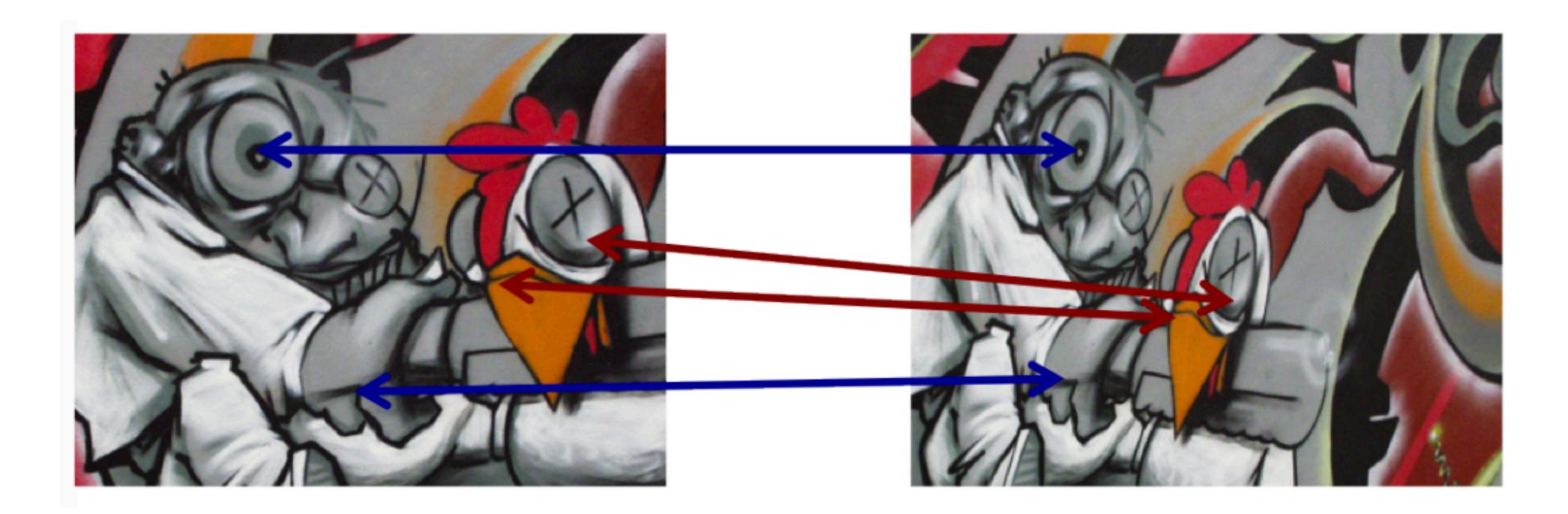
• What are properties of a good feature detector?

- What are properties of a good feature detector? • Repeatability, stability, viewpoint invariance

- What are properties of a good feature detector?
 - Repeatability, stability, viewpoint invariance
- Fire at "interesting regions" suitable for matching

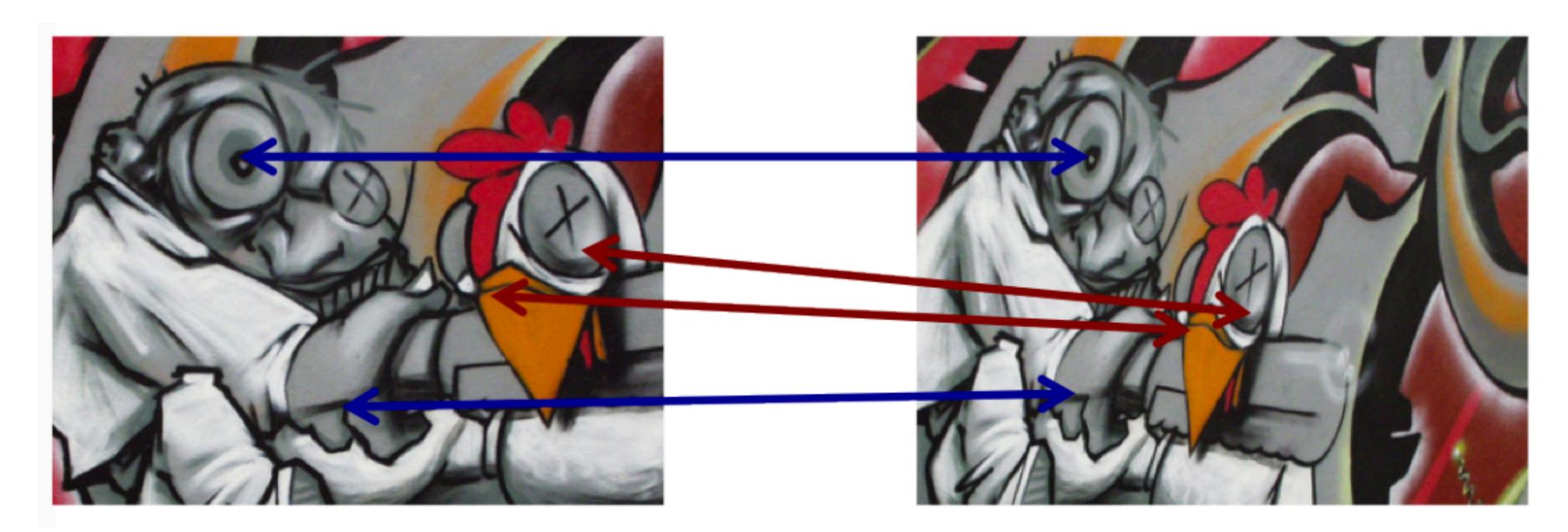
- What are properties of a good feature detector?
 - Repeatability, stability, viewpoint invariance
- Fire at "interesting regions" suitable for matching
- How to model this mathematically?

- What are properties of a good feature detector?
 - Repeatability, stability, viewpoint invariance
- Fire at "interesting regions" suitable for matching
- How to model this mathematically?
- How to train a detector from scratch without any bias to existing solutions?



[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017] Torsten Sattler

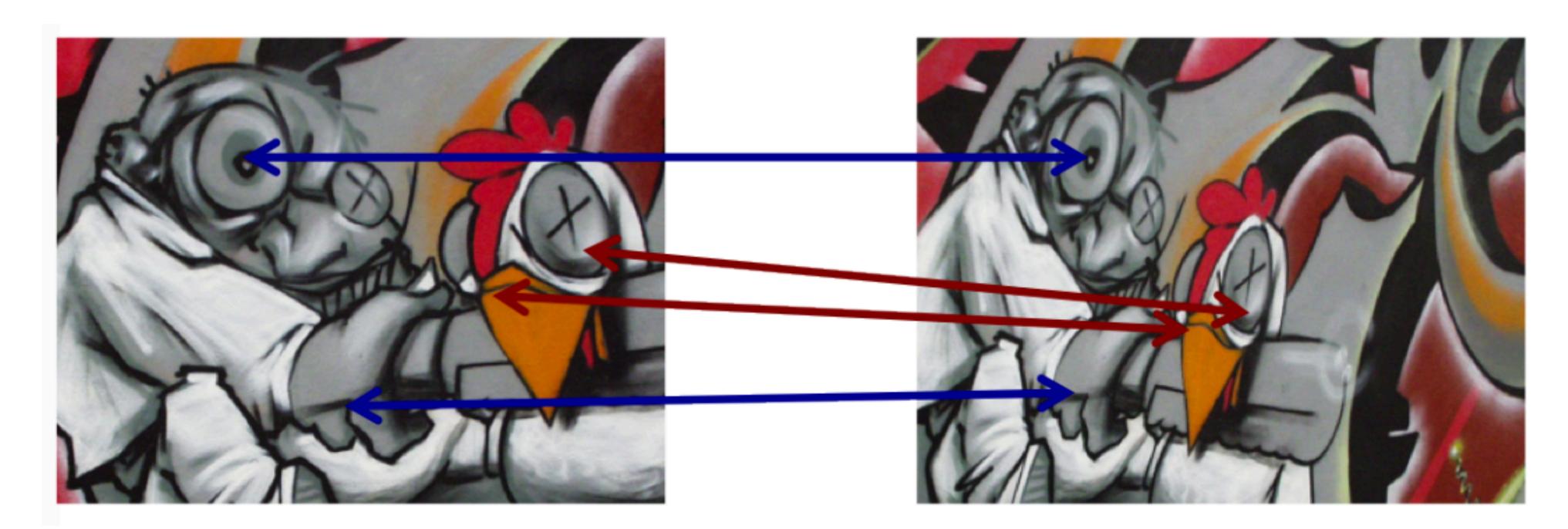
ETH zürich



• Learn function $H(x|w): \mathbb{R}^2 \rightarrow [-1, 1]$ with parameters w

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]

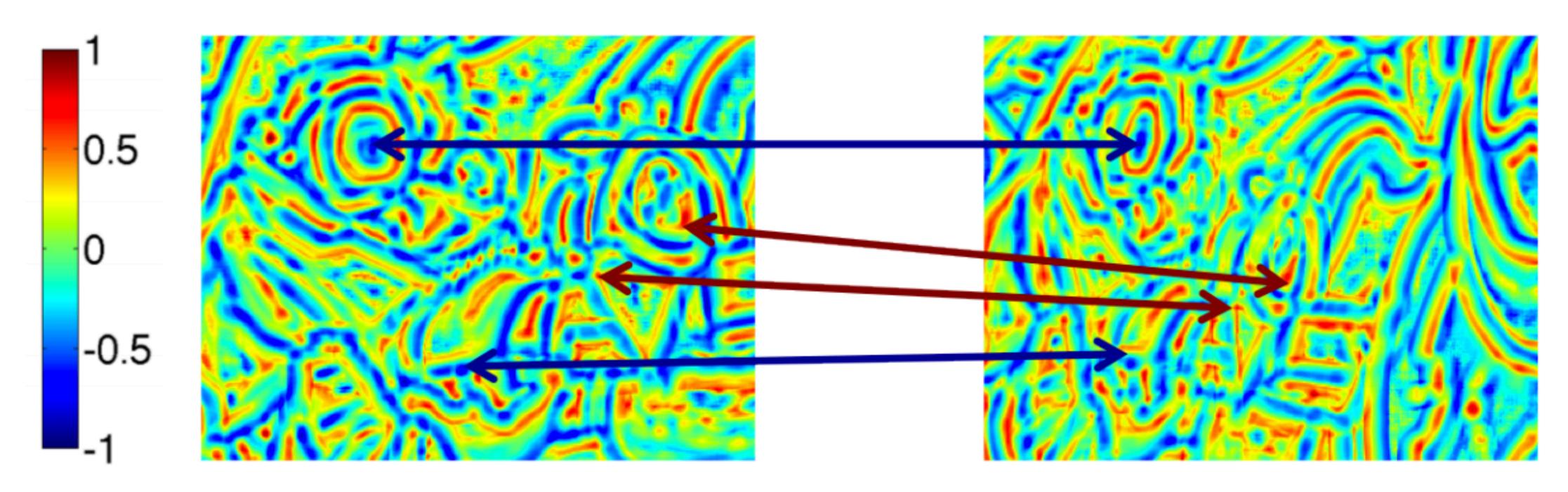
ETH zürich



- Interesting points are close to -1 or 1

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]

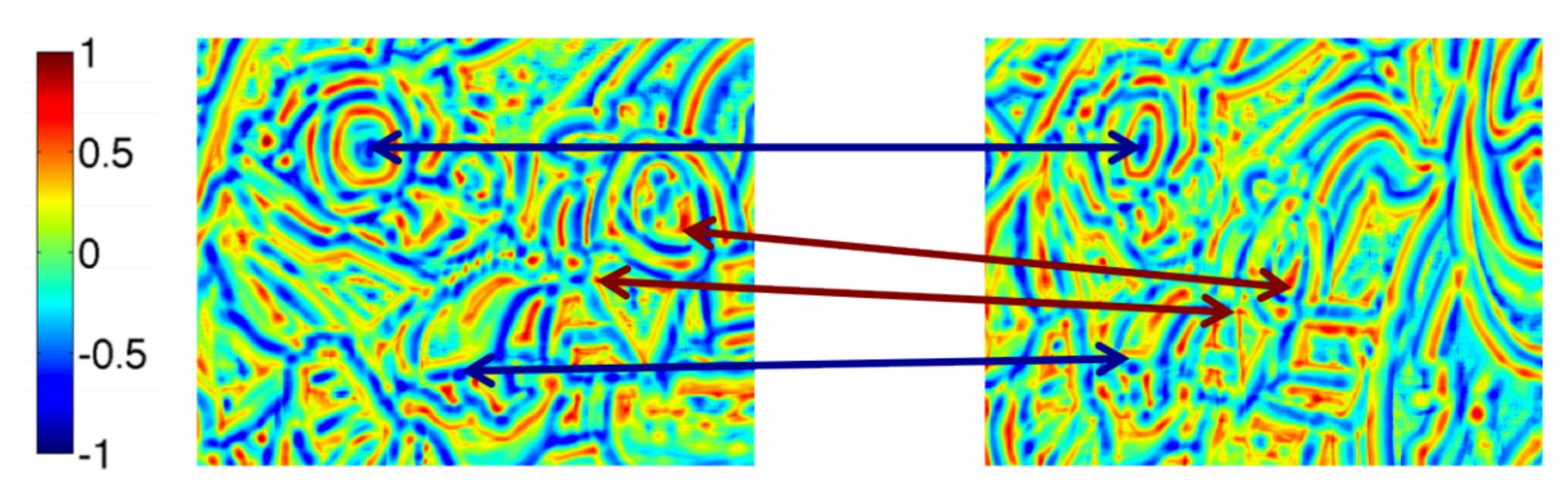
• Learn function $H(x|w): \mathbb{R}^2 \rightarrow [-1, 1]$ with parameters w



Interesting points are close to -1 or 1

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]

• Learn function $H(x|w): \mathbb{R}^2 \rightarrow [-1, 1]$ with parameters w



- Interesting points are close to -1 or 1

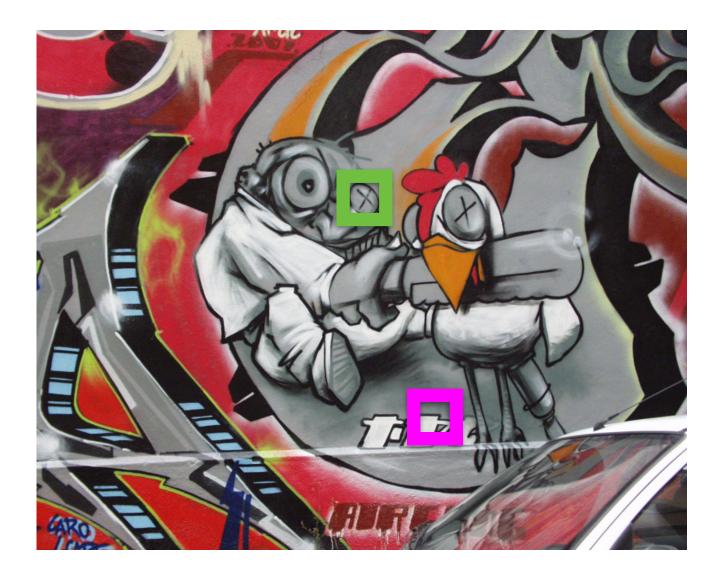
[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017] **ETH** zürich Torsten Sattler 19

• Learn function $H(x|w): \mathbb{R}^2 \rightarrow [-1, 1]$ with parameters w

Repeatability = consistent ranking under transformations

Learning to Rank

• Learn consistent ranking H(x|w):

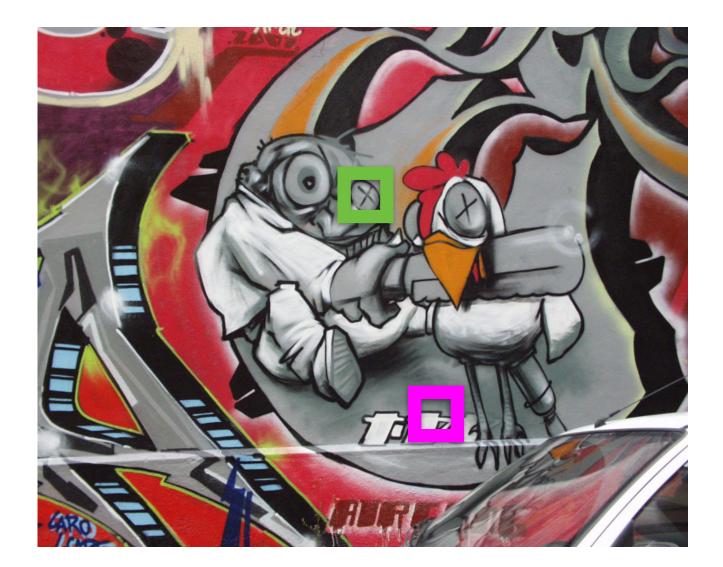


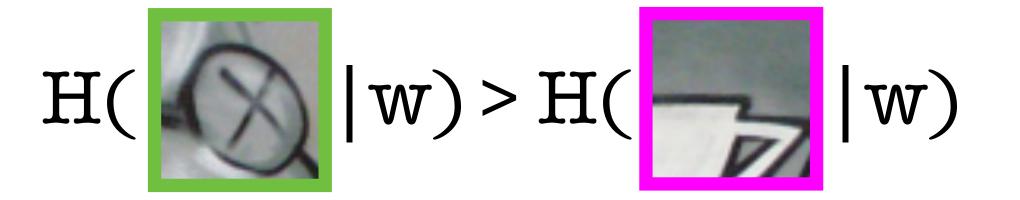
[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017] Torsten Sattler 20

ETH zürich

Learning to Rank

• Learn consistent ranking H(x|w):



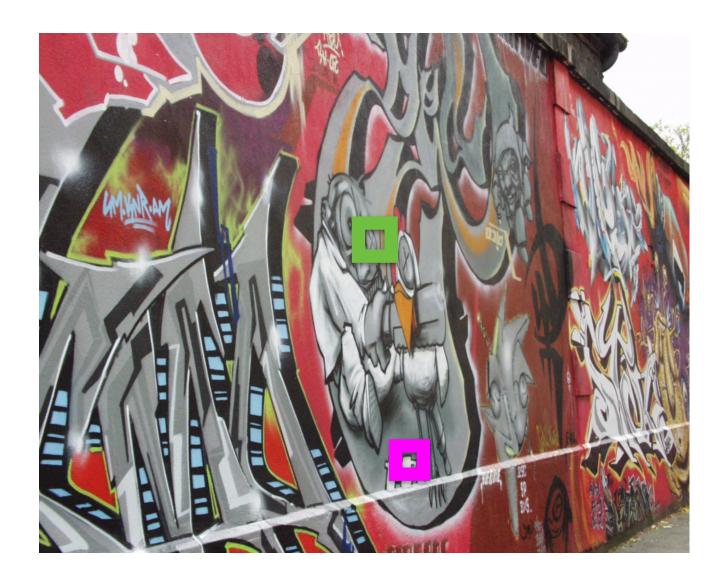


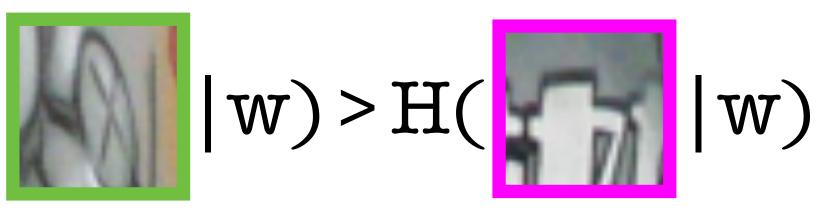
[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017] **ETH** zürich Torsten Sattler 20

• Learn consistent ranking H(x|w):

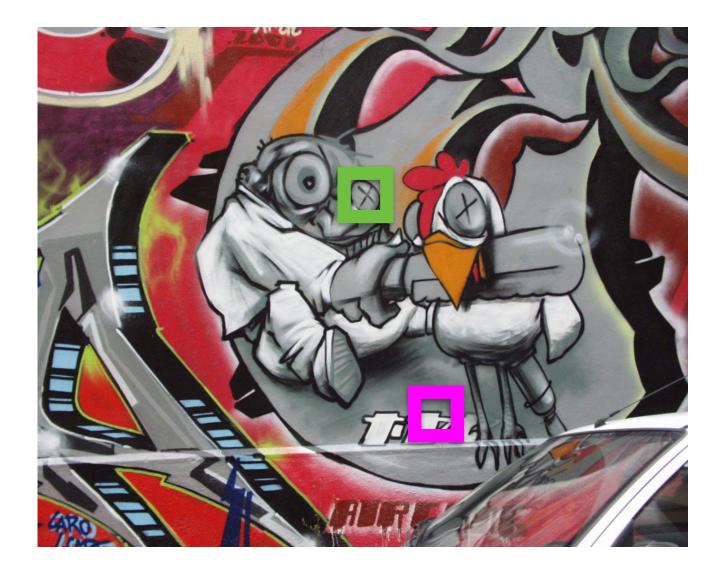


H

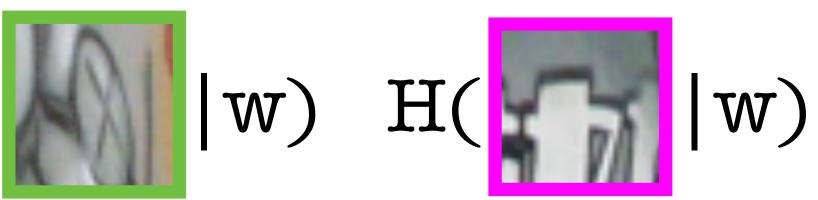




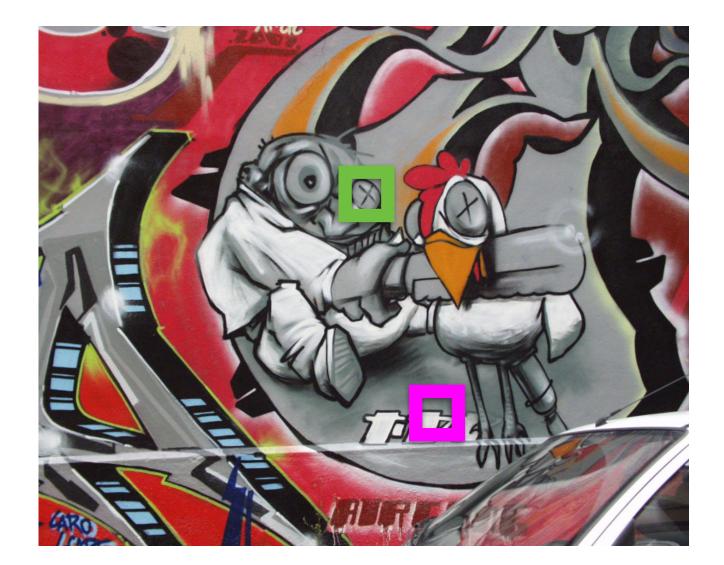
• Learn consistent ranking H(x|w):

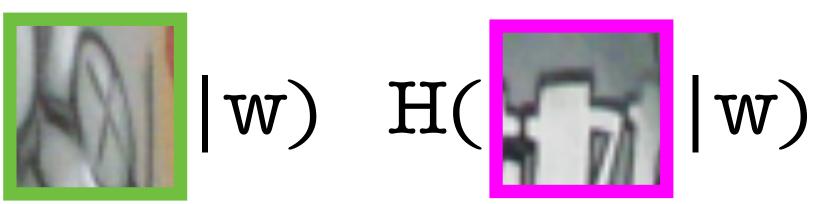


W)H(H W

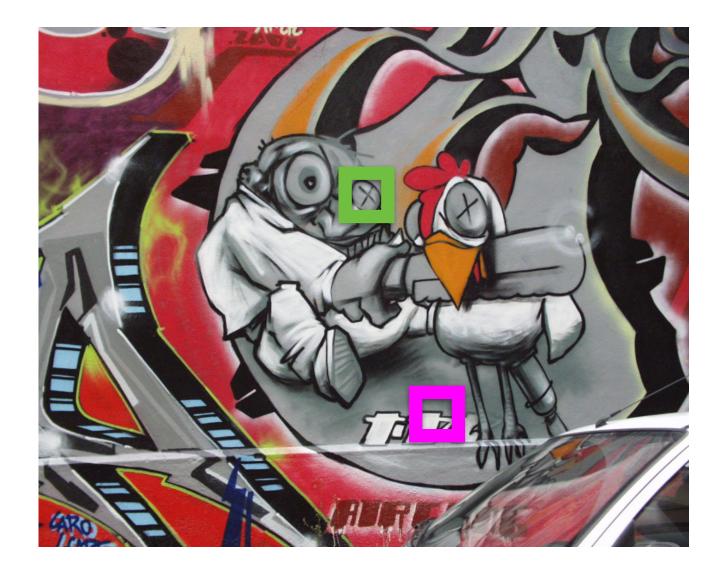


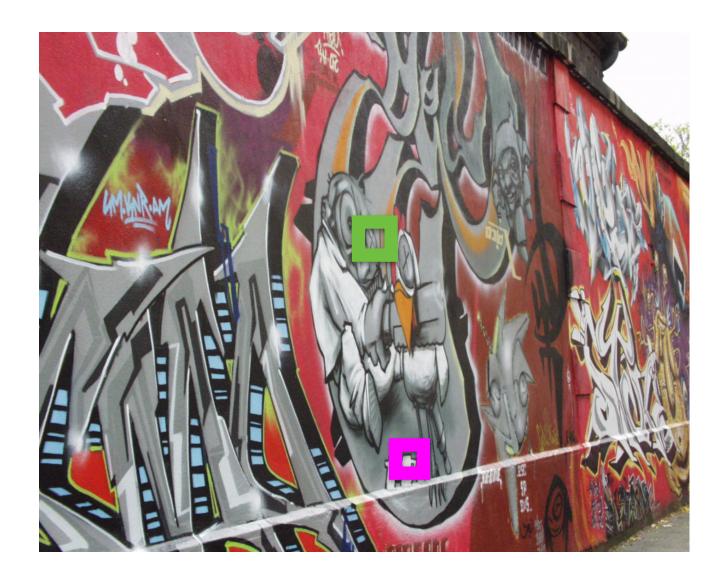
• Learn consistent ranking H(x|w):





• Learn consistent ranking H(x|w):



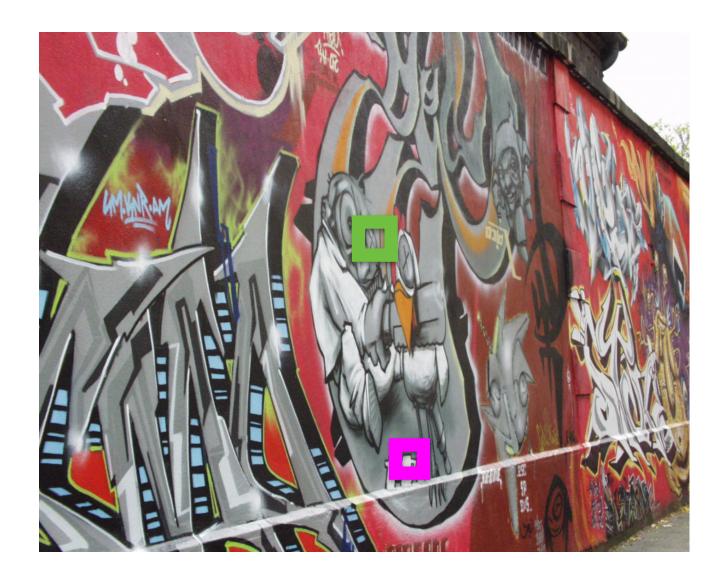


W)) W) - H(

• Learn consistent ranking H(x|w):



$$(H(\frac{1}{2}) + W) - H(\frac{1}{2}) + (H(\frac{1}{2})) + (H(\frac{1}{2}) + (H(\frac{1}{2}))) + (H(\frac{1}{2}) + (H($$

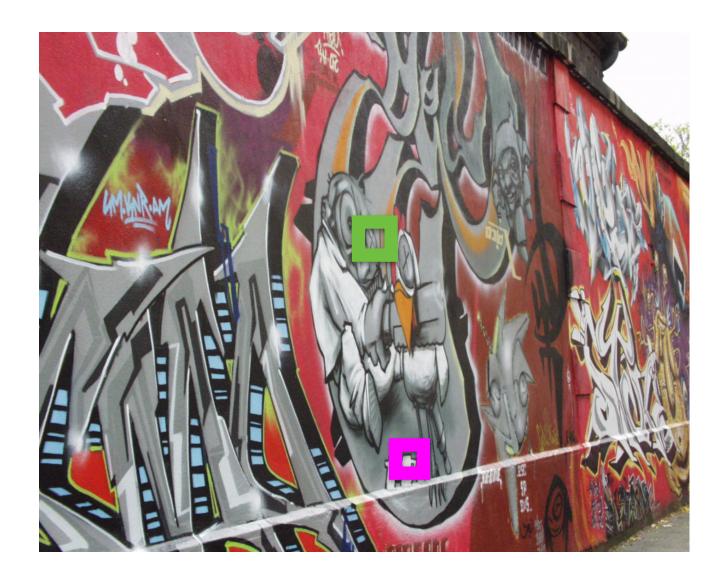


W)) W) - H(

• Learn consistent ranking H(x|w):



$$(H(\frac{1}{2}) + W) - H(\frac{1}{2}) + (H(\frac{1}{2})) + (H(\frac{1}{2}) + (H(\frac{1}{2}))) + (H(\frac{1}{2}) + (H($$

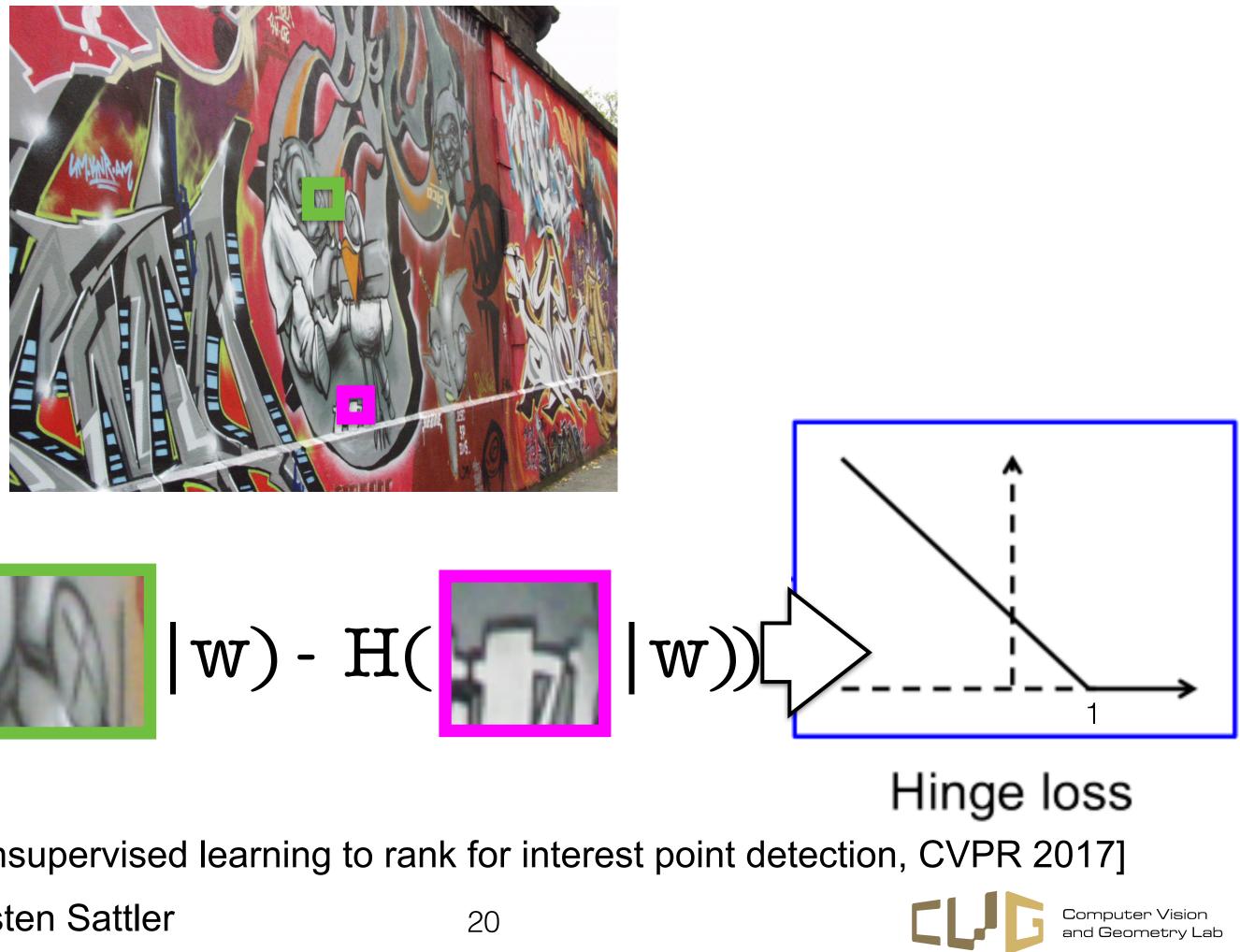


|w) - H(|w)) > 0

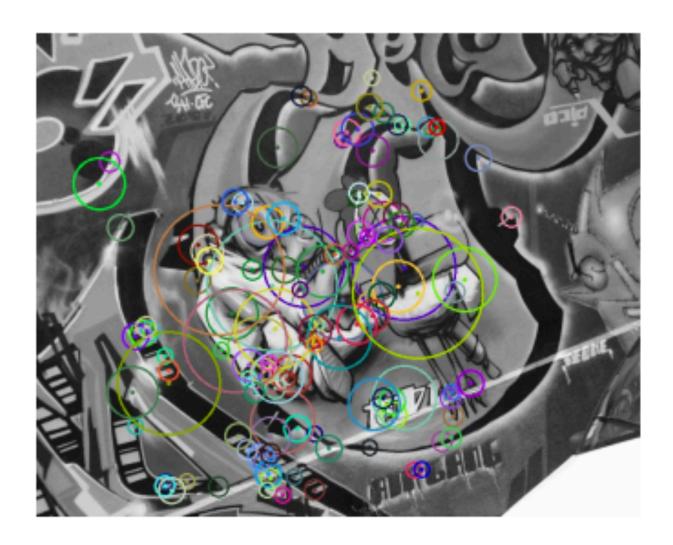
• Learn consistent ranking H(x|w):



$$(H(\frac{1}{2}) + W) - H(\frac{1}{2}) + (H(\frac{1}{2})) + (H(\frac{1}{2}) + (H(\frac{1}{2}))) + (H(\frac{1}{2}) + (H($$



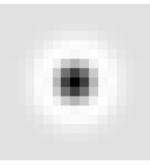
Detection Results



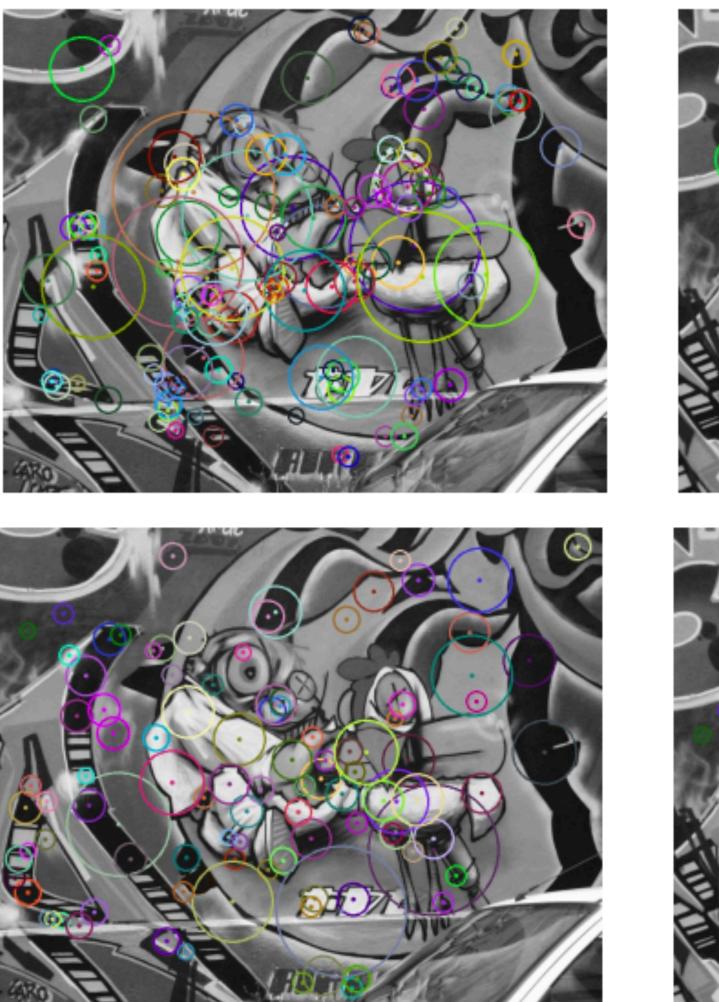
[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017] Torsten Sattler 21

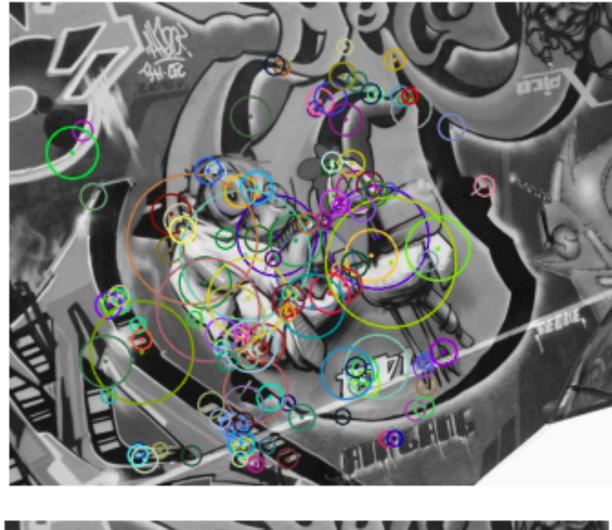
ETH zürich

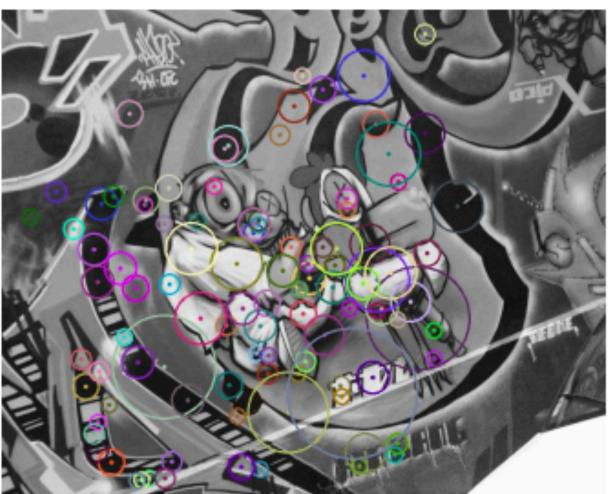
Difference-of-Gaussians



Detection Results

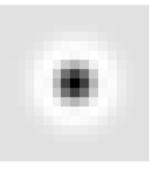




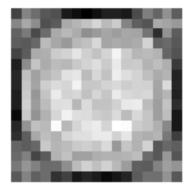


[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017] **ETH** zürich Torsten Sattler 21

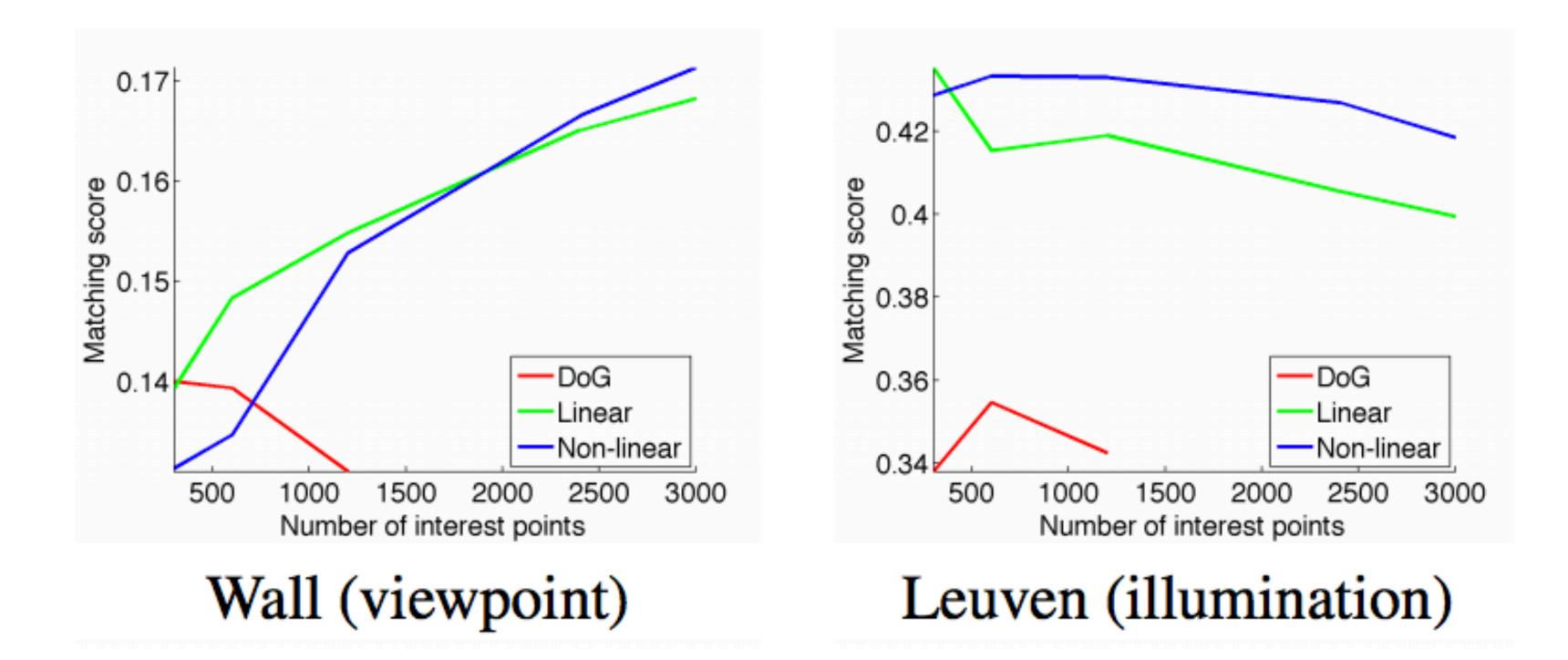
Difference-of-Gaussians



ours

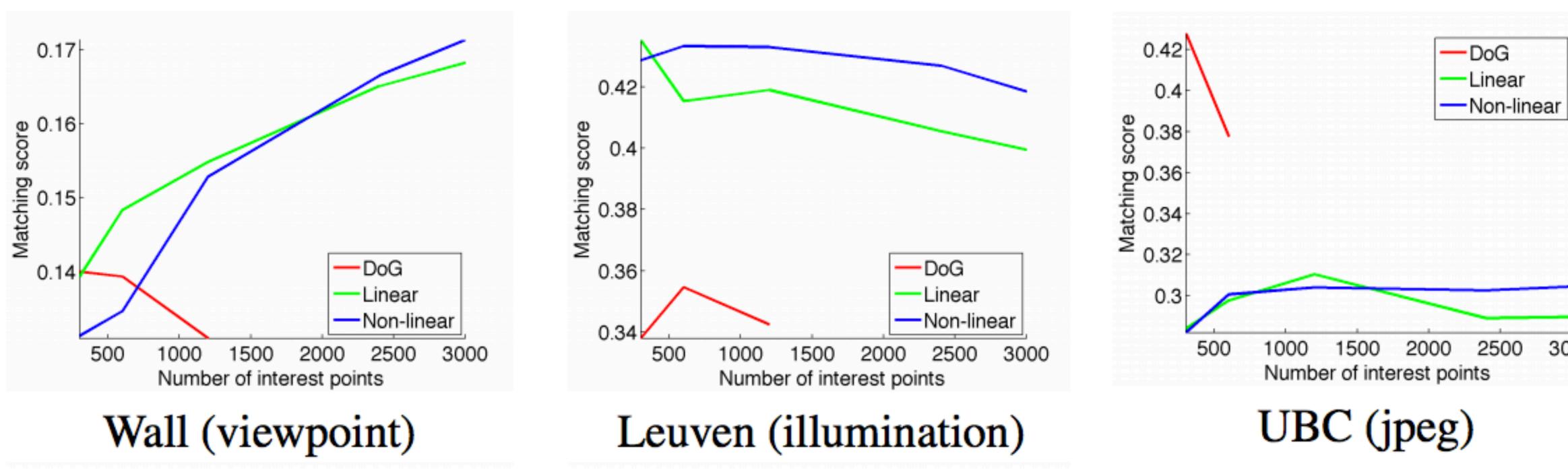


Matching Results



[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]

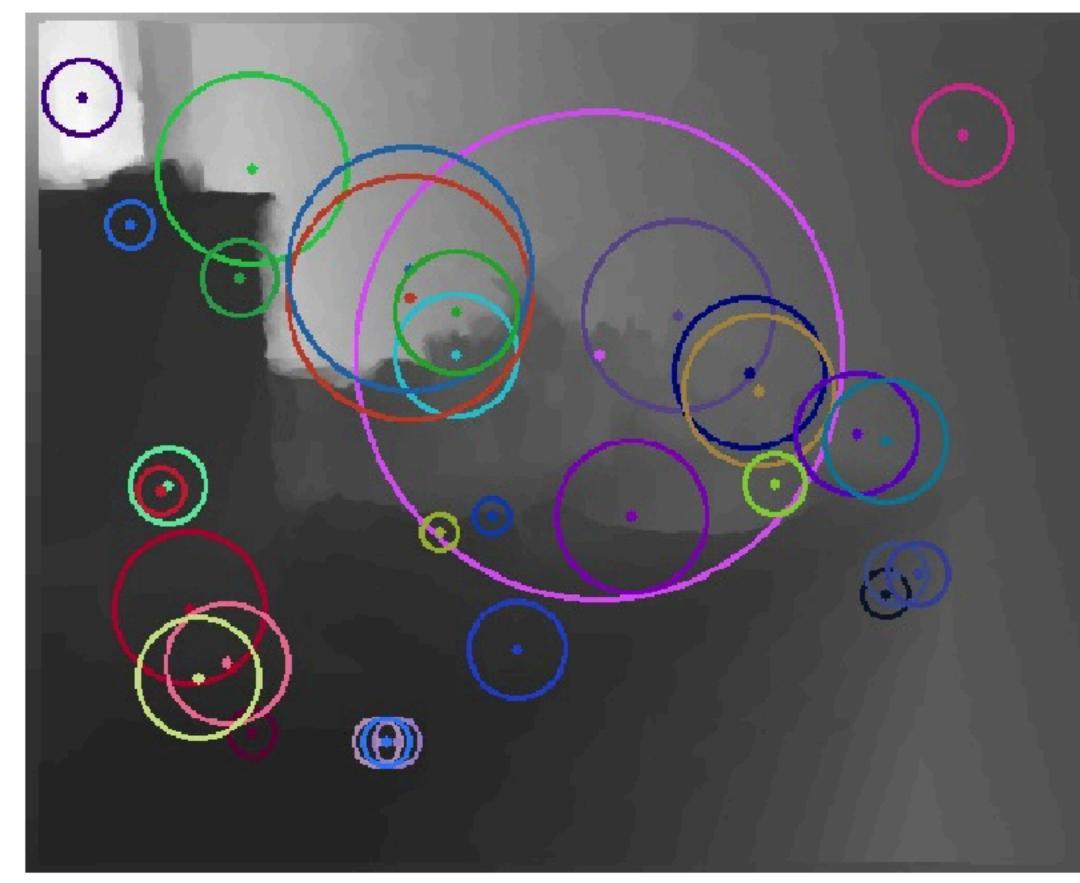
Matching Results



[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]

Multi-Modal Features

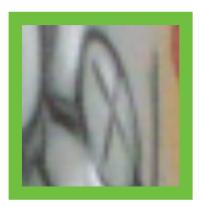
[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]



• Learn mapping from patch to descriptor in Rⁿ

- Learn mapping from patch to descriptor in Rⁿ
- Popular approach: Learning via triplets

- Learn mapping from patch to descriptor in Rⁿ
- Popular approach: Learning via triplets

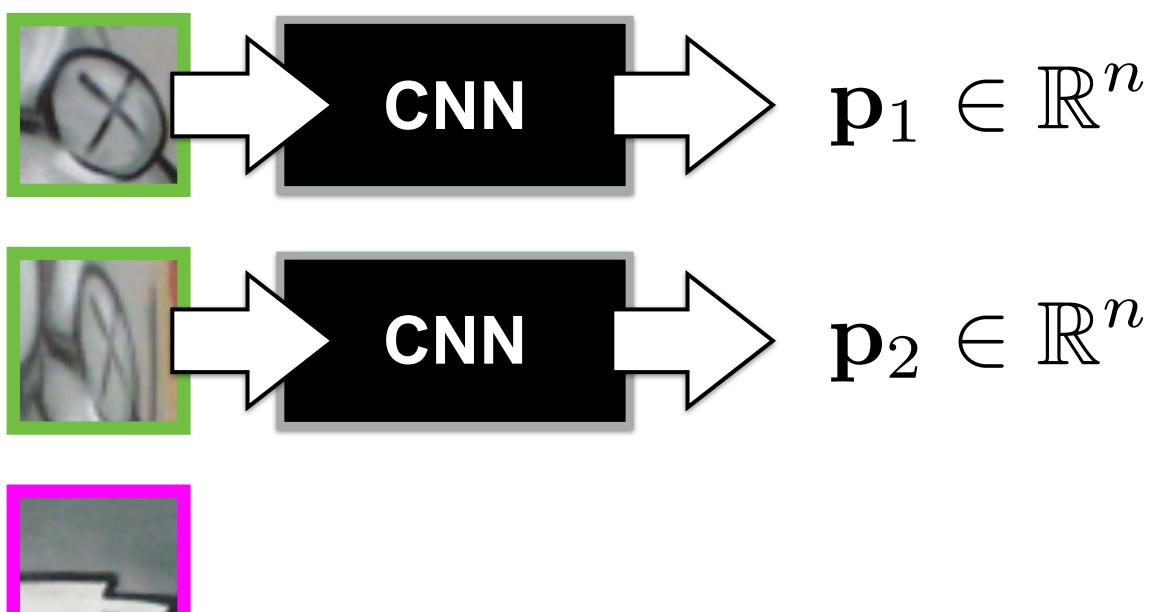


- Learn mapping from patch to descriptor in Rⁿ
- Popular approach: Learning via triplets

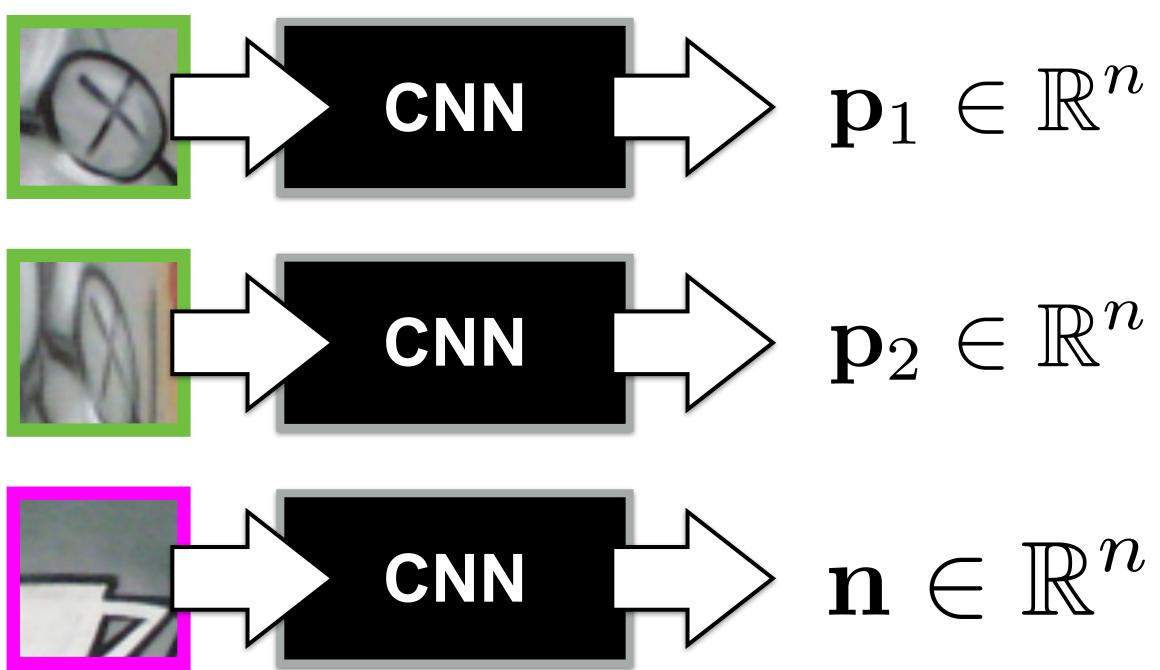




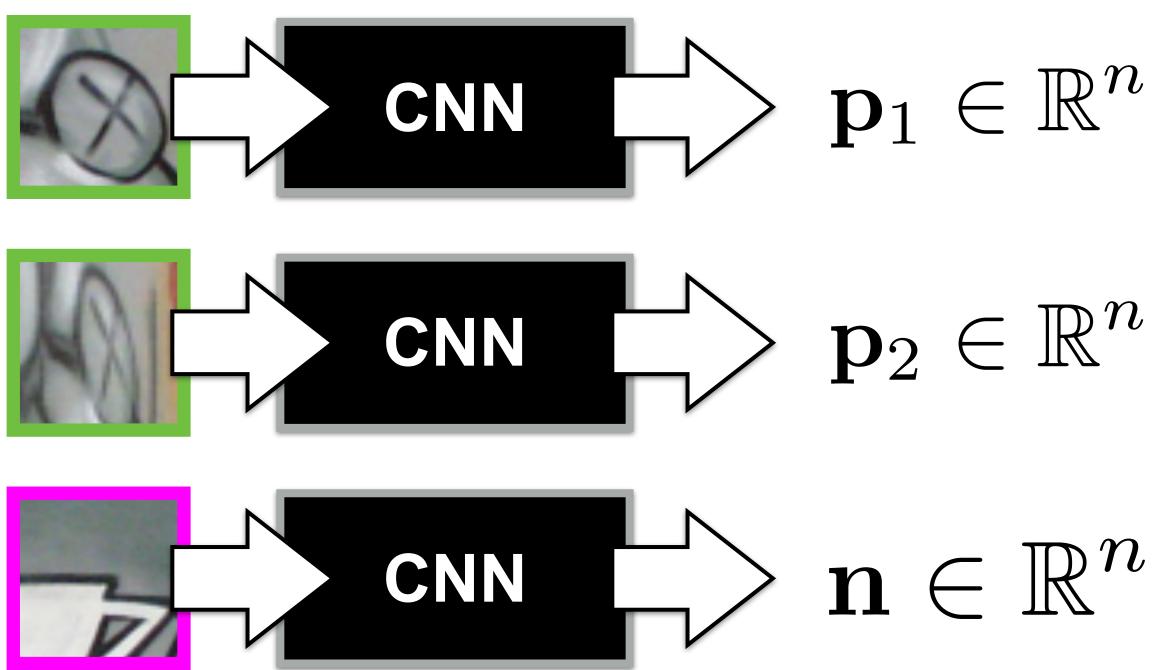
- Learn mapping from patch to descriptor in Rⁿ
- Popular approach: Learning via triplets



- Learn mapping from patch to descriptor in Rⁿ • Popular approach: Learning via triplets



- Learn mapping from patch to descriptor in Rⁿ • Popular approach: Learning via triplets

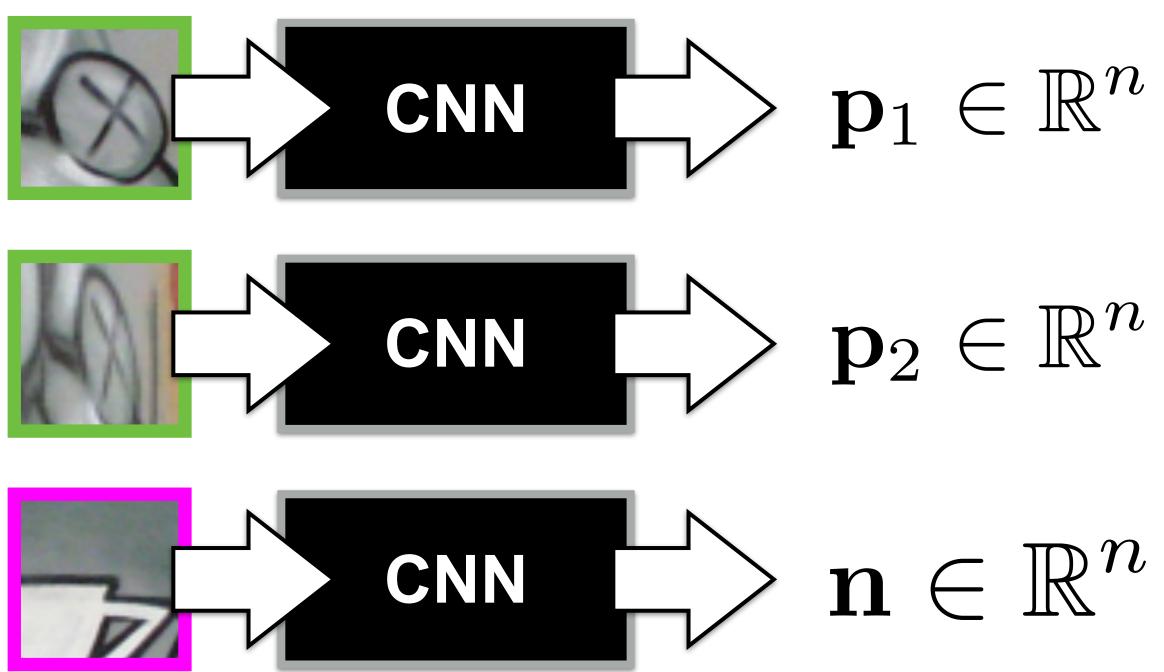


[Schönberger, Hardmeier, Sattler, Pollefeys, Evaluation of Hand-Crafted and Learned Local Features. CVPR 2017] Torsten Sattler EHzürich 24

triplet loss: $\max(0, \eta + ||\mathbf{p}_1 - \mathbf{p}_2||_2 - ||\mathbf{n} - \mathbf{p}_2||_2)$

Computer Vision

- Learn mapping from patch to descriptor in Rⁿ • Popular approach: Learning via triplets



[Schönberger, Hardmeier, Sattler, Pollefeys, Evaluation of Hand-Crafted and Learned Local Features. CVPR 2017] Torsten Sattler EHzürich 24

triplet loss: $\max(0, \eta + ||\mathbf{p}_1 - \mathbf{p}_2||_2 - ||\mathbf{n} - \mathbf{p}_2||_2)$ margin

Computer Vision

Hand-Crafted vs. Learned Descriptors Comparing learned with hand-crafted descriptors (SIFT variants)

[Schönberger, Hardmeier, Sattler, Pollefeys, Evaluation of Hand-Crafted and Learned Local Features. CVPR 2017] Torsten Sattler

Computer Vision

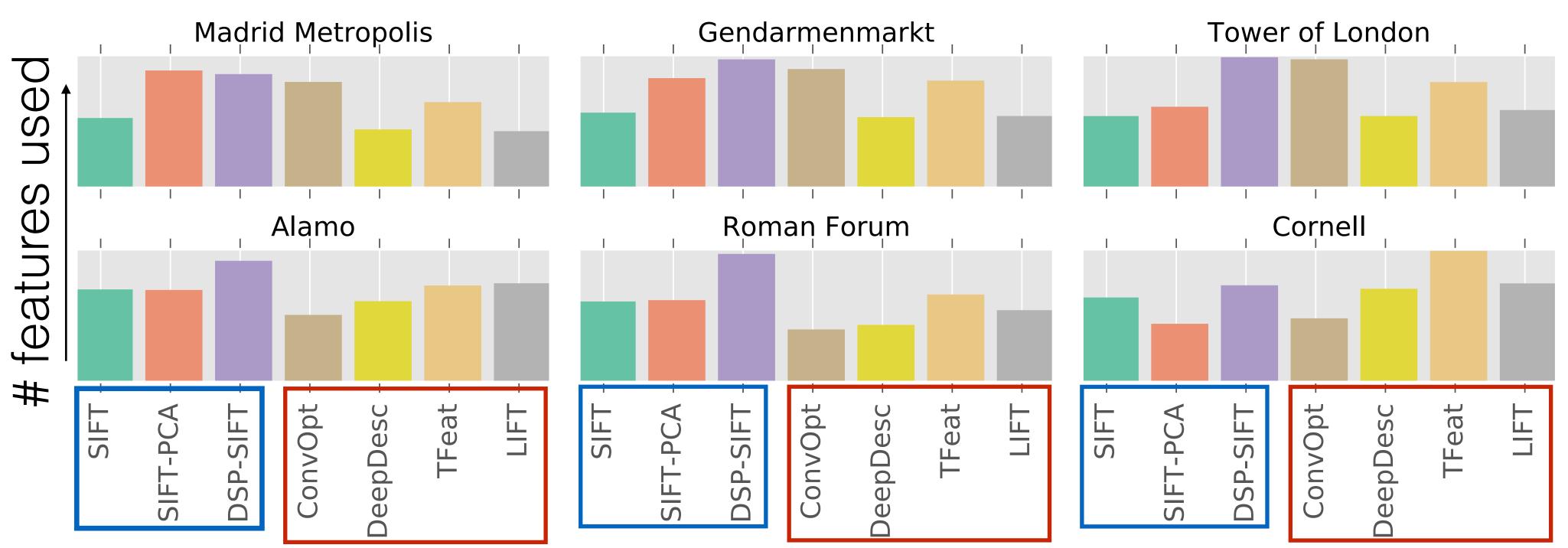
Hand-Crafted vs. Learned Descriptors Comparing learned with hand-crafted descriptors (SIFT variants) Evaluated on Structure-from-Motion task

Hand-Crafted vs. Learned Descriptors

- Comparing learned with hand-crafted descriptors (SIFT variants) Evaluated on Structure-from-Motion task
- Measure: Number of triangulated features (higher = better)

Hand-Crafted vs. Learned Descriptors • Comparing learned with hand-crafted descriptors (SIFT variants)

- Evaluated on Structure-from-Motion task
- Measure: Number of triangulated features (higher = better)



[Schönberger, Hardmeier, Sattler, Pollefeys, Evaluation of Hand-Crafted and Learned Local Features. CVPR 2017]

ETH zürich

Three Cases

Visual Localization: CNN-based approach clearly worse than state-of-the-art

Three Cases

- Visual Localization: CNN-based approach clearly worse than state-of-the-art
- Feature detector learning: Similar to better performance compared to state-of-the-art

Three Cases

- Visual Localization: CNN-based approach clearly worse than state-of-the-art
- Feature detector learning: Similar to better performance compared to state-of-the-art
- Feature descriptor learning: Hand-crafted descriptors perform better for wide range of scenes

Hold off replacing everything with CNNs (at least for now)

- Consider using a CNN if:

Hold off replacing everything with CNNs (at least for now)

- Consider using a CNN if:
- Current solutions do not perform well on your task

Hold off replacing everything with CNNs (at least for now)

- Hold off replacing everything with CNNs (at least for now)
- Consider using a CNN if:
- Current solutions do not perform well on your task Your task is rather specific, i.e., generalization is not important

- Hold off replacing everything with CNNs (at least for now)
- Consider using a CNN if:
- Current solutions do not perform well on your task Your task is rather specific, i.e., generalization is not
- important
- You have enough training data

- Hold off replacing everything with CNNs (at least for now)
- Consider using a CNN if:
- Current solutions do not perform well on your task Your task is rather specific, i.e., generalization is not
- important
- You have enough training data
- In any case: Compare against simple baselines!

