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[Pohlen et al., Full-Resolution Residual Networks for Semantic 
Segmentation in Street Scenes, CVPR 2017]

[Krizhevsky  et al., ImageNet Classification with Deep 
Convolutional Neural Networks , NIPS 2012]

[Ren  et al., Faster R-CNN: Towards real-time object 
detection with region proposal networks , NIPS 2015]



Torsten Sattler

Deep Learning Revolution

3

[Zhou et al., Unsupervised Learning of Depth and Ego-Motion 
from Video, CVPR 2017]

[Pohlen et al., Full-Resolution Residual Networks for Semantic 
Segmentation in Street Scenes, CVPR 2017]

[Krizhevsky  et al., ImageNet Classification with Deep 
Convolutional Neural Networks , NIPS 2012]

[Ren  et al., Faster R-CNN: Towards real-time object 
detection with region proposal networks , NIPS 2015]
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I. CNNs for Visual Localization 

II. CNNs for Feature Detection & Description
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[Lynen, Sattler, Bosse, Hesch, Pollefeys, Siegwart, Large-scale Real-Time Visual-Inertial Localization. RSS 2015]
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•Offline: Reconstruct scene using Structure-from-Motion
•Associate each 3D point with local image descriptors (SIFT)

3D Point:
3D point + descriptors
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Extract Local Features

Establish 2D-3D Matches

Estimate Camera Pose

Learning Visual 
Localization?
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[Kendall, Grimes, Cipola, PoseNet: A convolutional network for real-time 6-dof camera relocalization. ICCV 2015]
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[Kendall, Grimes, Cipola, PoseNet: A convolutional network for real-time 6-dof camera relocalization. ICCV 2015] 
[Kendall, Cipola, Geometric loss functions for camera pose regression with deep learning. CVPR 2017]

• Input: Images     with known 6DOF camera pose
• Non-geometric loss function:

• Geometric loss function: Minimize re-projection error of 3D 
points visible in image

Li = kci � ĉik2 + � ·
����qi �

q̂i

kq̂ik

����
2

Ii (ĉi, q̂i)
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Measure: Median position [m] / orientation [deg] error

[Walch, Hazirbas, Leal-Taixé, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017]
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[Sattler, Torii, Sivic, Pollefeys, Taira, Okutomi, Pajdla,Are Large-Scale 3D Models Really Necessary for Accurate Visual Localization? CVPR  2017]

Quantile Errors [m]

25% 50% 75%

PoseNet + geometric loss - 7.9 -

Image Retrieval (No Pose 
Estimation) 0.9 2.9 9.0

[Sattler et al., PAMI 2017] 0.5 1.3 5.0

[Zeisl et al., ICCV 2015] 0.2 0.6 2.1

Results on Dubrovnik dataset: 
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[Walch, Hazirbas, Leal-Taixé, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017]

A Hard Example

original PoseNet 1.87m, 6.14○

PoseNet + LSTM 1.31m, 2.79○

[Sattler et al., PAMI 
2017] SfM failed
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• PoseNet + variants learn mapping from visual appearance to 
6D pose space

• In theory: Possible to learn camera pose regression (for 
known camera intrinsics)

• In practice: Probably not enough training data to learn 
mapping that generalizes away from training data

• Promising results for hard scenes in which feature-based 
approaches fail

• Why learn full pose estimation pipeline?
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Extract Local Features

Establish 2D-3D Matches

Estimate Camera Pose well-understood problemEstimate Camera Pose

nearest neighbor searchEstablish 2D-3D Matches

Extract Local Features
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I. CNNs for Visual Localization 

II. CNNs for Feature Detection & Description
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Learning Feature Detectors

• What are properties of a good feature detector?
• Repeatability, stability, viewpoint invariance
• Fire at “interesting regions” suitable for matching

• How to model this mathematically?

• How to train a detector from scratch without any bias to 
existing solutions?
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[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Learning Feature Detectors

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]

• Learn function H(x|w): R2 → [-1, 1] with parameters w
• Interesting points are close to -1 or 1
• Repeatability = consistent ranking under transformations
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[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]

• Learn consistent ranking H(x|w):
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[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]

• Learn consistent ranking H(x|w):
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Learning to Rank

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]

• Learn consistent ranking H(x|w):

H(          |w) H(          |w) H(          |w) H(          |w)*- -( ) ( )
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Learning to Rank

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]

• Learn consistent ranking H(x|w):

H(          |w) H(          |w) H(          |w) H(          |w)*- -
1

( ) ( )
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Detection Results
Difference-of-

Gaussians

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Detection Results
Difference-of-

Gaussians

ours

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Matching Results

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Matching Results

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Multi-Modal Features

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Learning Patch Descriptors
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Learning Patch Descriptors

[Schönberger, Hardmeier, Sattler, Pollefeys, Evaluation of Hand-Crafted and Learned Local Features. CVPR 2017]

• Learn mapping from patch to descriptor in Rn

• Popular approach: Learning via triplets

CNN p1 2 Rn

CNN p2 2 Rn
triplet loss:

max(0, ⌘ + ||p1�p2||2 � ||n�p2||2)

marginCNN n 2 Rn
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• Comparing learned with hand-crafted descriptors (SIFT variants)
• Evaluated on Structure-from-Motion task
• Measure: Number of triangulated features (higher = better)

[Schönberger, Hardmeier, Sattler, Pollefeys, Evaluation of Hand-Crafted and Learned Local Features. CVPR 2017]
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Three Cases

• Visual Localization: CNN-based approach clearly 
worse than state-of-the-art

• Feature detector learning: Similar to better 
performance compared to state-of-the-art

• Feature descriptor learning: Hand-crafted descriptors 
perform better for wide range of scenes
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Out with the Old? - Lessons Learned

• Hold off replacing everything with CNNs (at least for now)
• Consider using a CNN if:
• Current solutions do not perform well on your task
• Your task is rather specific, i.e., generalization is not 

important
• You have enough training data
• In any case: Compare against simple baselines!


