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Convolutional Neural Networks
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pooling pooling

(convolution) parameters learned from data

ETHzurich Torsten Sattler 2 CLAD s



Deep Learning Revolution

ETHzurich Torsten Sattler 3 CLAD s



Deep Learning Revolution
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motor scooter leopard
motor scooter legpard
go-kart jaguar
moped cheetah
bumper car snow leopard
golfcart Egyptian cat

[Krizhevsky et al., ImageNet Classification with Deep
Convolutional Neural Networks , NIPS 2012]
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[Ren et al., Faster R-CNN: Towards real-time object
Convolutional Neural Networks , NIPS 2012]

detection with region proposal networks , NIPS 2015]
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eep Learning Revolution
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N [Pohlen et al., Full-Resolution Residual Networks for Semantic
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[Krizhevsky et al., ImageNet Classification with Deep [Ren et al., Faster R-CNN: Towards real-time object
Convolutional Neural Networks , NIPS 2012] detection with region proposal networks , NIPS 2015]
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N [Pohlen et al., Full-Resolution Residual Networks for Semantic
berson : 0.9 Segmentation in Street Scenes, CVPR 2017]
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motor scooter leo
go-kart jaguar
moped cheetah
bumper car snow leopard
golfcart Egyptian cat
[Krizhevsky et al., ImageNet Classification with Deep [Ren et al., Faster R-CNN: Towards real-time object
Convolutional Neural Networks , NIPS 2012] detection with region proposal networks , NIPS 2015]

[Zhou et al., Unsupervised Learning of Depth and Ego-Motion
from Video, CVPR 2017]
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Overview

. CNNs for Visual Localization

. CNNs for Feature Detection & Description
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Isual Localization
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[Middelberg, Sattler, Untzelmann, Kobbelt, Scalable 6-DOF Localization on Mobile Devices. ECCV 2014]
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Visual Localization

L arge-scale, Real-1ime
Visual-lnertial Localization

Simon Lynen, Torsten Sattler,
Mike Bosse, Joel Hesch,
Marc Pollefeys and Roland Siegwart

[Lynen, Sattler, Bosse, Hesch, Pollefeys, Siegwart, Large-scale Real-Time Visual-Inertial Localization. RSS 20195]
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e Offline: Reconstruct scene using Structure-from-Motion
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Classic Localization Pipeline

e Offline: Reconstruct scene using Structure-from-Motion
* Associate each 3D point with local image descriptors (SIFT
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Classic Localization Pipeline

Extract Local Features

Computer Vision
and Geometry Lab

Torsten Sattler

Establish 2D-3D Matches
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Classic Localization Pipeline
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CNN-based Localization (PoseNet)
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Non-Linear Embedding

[Kendall, Grimes, Cipola, PoseNet: A convolutional network for real-time 6-dof camera relocalization. ICCV 20195]

ETHzurich Torsten Sattler 9 CLAD s



CNN-based Localization (PoseNet)

ETH:zurich

CNNs

Yy ©

\ . — o — R ——
—_— = == = =

“Non-Linear Embeddlng | Linear Regressmn |

[Kendall, Grimes, Cipola, PoseNet: A convolutional network for real-time 6-dof camera relocalization. ICCV 20195]
Torsten Sattler 9 C L,I el Goormetroy Lab



CNN-based Localization (PoseNet)
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[Kendall, Grimes, Cipola, PoseNet: A convolutional network for real-time 6-dof camera relocalization. ICCV 20195]
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CNN-based Localization

Pretrained
| GoogLeNet
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[Walch, Hazirbas, Leal-Taixe, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017]
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[Walch, Hazirbas, Leal-Taixe, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017]
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Training PoseNet

e Input: Images I, with known 6DOF camera pose (¢;, q;)

[Kendall, Grimes, Cipola, PoseNet: A convolutional network for real-time 6-dof camera relocalization. ICCV 2015]
[Kendall, Cipola, Geometric loss functions for camera pose regression with deep learning. CVPR 2017]

ETHzurich Torsten Sattler 1 CLAD s



e Input: Images I, with known 6DOF camera pose (¢;, q;)

Training PoseNet

e Non-geometric loss function:

ETH:zurich

Li = |lci — Cilj2 + 5 -

q:

d;

|di |

[Kendall, Grimes, Cipola, PoseNet: A convolutional network for real-time 6-dof camera relocalization. ICCV 2015]

[Kendall, Cipola, Geometric loss functions for camera pose regression with deep learning. CVPR 2017]
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Training PoseNet

e Input: Images I, with known 6DOF camera pose (¢;, q;)

e Non-geometric loss function:

Li = |lci — Cilj2 + 5 -

q:

d;

|di |

2

e Geometric loss function: Minimize re-projection error of 3D

points visible In image

[Kendall, Grimes, Cipola, PoseNet: A convolutional network for real-time 6-dof camera relocalization. ICCV 2015]
[Kendall, Cipola, Geometric loss functions for camera pose regression with deep learning. CVPR 2017]
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Deep vs. Classical Localization

Measure: Median position [m] / orientation [deg] error

[Walch, Hazirbas, Leal-Taixe, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017]
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Deep vs. Classical Localization

Measure: Median position [m] / orientation [deg] error

1.92m 2.31Tm 1.4om 2.66m [ 0.32m 0.4/m 029m 0.48m 0.4/m 0.59m 0.47m
5.400 5.38¢ 8.080 8.48° | 8.120 1440  12.0© /7.68° 8.420 8.040 13.8¢

original PoseNet

Cambridge Landmarks 7 Scenes
(outdoor) (indoor)

[Walch, Hazirbas, Leal-Taixe, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017]
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Deep vs. Classical Localization

Measure: Median position [m] / orientation [deg] error

. 1.92m
original PoseNet 5 400
0.99m

PoseNet + LSTM 3 650

2.31Tm
5.380

1.51Tm
4.290

1.4om 2.65m

8.089

1.18m
[.440

8.489

1.52m
6.689

Cambridge Landmarks
(outdoor)

0.32m 0.4/m 0.29m

0.48m 0.4/m

8.120 14.40 12.00 /.08° 8.420
0.24m 0.34dm 021Tm 0.30m 0.33m
5770 11.90 13.70 8.080 /.000
7 Scenes
(indoor)

0.59m 0.47m
8.640 13.80

0.3/m 0.40m
8.830 13.70

[Walch, Hazirbas, Leal-Taixe, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017]
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Deep vs. Classical Localization

Measure: Median position [m] / orientation [deg] error

original PoseNet

PoseNet + LSTM

PoseNet +
geometric loss

1.92m
5.400

0.99m
3.659

0.88m
1.040

2.31Tm
5.380

1.51Tm
4.290

3.20m
3.290

1.4om 2.65m

8.089

1.18m
[.440

0.88m
3.789

8.489

1.52m
6.689

1.57/m
3.320

Cambridge Landmarks
(outdoor)

0.32m
8.120

0.24m
5770

0.13m
4.480

04/m 029m 0.48m 0.4/m
14.40 12.00 /.680 8.420
0.34dm 0.21Tm 0.30m 0.33m
11.90 13.70  8.080° /.000
02/m 0.1/m 0.19m 0.20m
11.30 13.00 5550 4.750
7 Scenes
(indoor)

0.59m
8.640

0.3/m
8.830

0.23m
5.350

0.47m
13.80

0.40m
13.70

0.35m
12.40

[Walch, Hazirbas, Leal-Taixe, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017]
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Deep vs. Classical Localization

Measure: Median position [m] / orientation [deg] error

original PoseNet 1.92m 2.31Tm 1.4em 2.65m | 0.32m 04/m 0.29m 0.48m 0.47/m 0.59m 0.47m
J 5.400 5380 8.080 8480 | 8120 14.40 12.00 /.680 8.420 8.640 13.80
poseNet + LSTM 0.99m 1.51Tm 1.18m 1.52m | 0.24m 0.34m 021m 0.30m 0.33m 0.37m 0.40m
3.650 4290 7440 6.68° | 5.7/0 11.90 13.70 8.080 /.000 8.830 13.70
PoseNet + 0.88m 3.20m 088m 1.5/m |[0.183m 0.2/m 0.1/m 0.19m 0.26m 0.23m 0.35m
geometric loss 1.040 3.290 3./80 3.32°0 | 4480 1130 13.00 5.55° 4,750 5.350 12.40
[Sattler et al., PAMI 042m 044m 0.12m 0.19m | 0.04m 0.03m 0.02m 0.09m 0.08m 0.07m 0.03m
2017] 0.550 1.01©¢ 0.40©0 0.540 | 1.96© 1.530° 1.450 3.61° 3.200 3.370 2.220

Cambridge Landmarks 7 Scenes

(outdoor) (indoor)

[Walch, Hazirbas, Leal-Taixe, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017]
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Deep vs. Classical Localization

Results on Dubrovnik dataset:

Quantile Errors [m]
25% 50% 75%

PoseNet + geometric loss - 7.9 -

[Sattler, Torii, Sivic, Pollefeys, Taira, Okutomi, Pajdla,Are Large-Scale 3D Models Really Necessary for Accurate Visual Localization? CVPR 2017]
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Deep vs. Classical Localization

Results on Dubrovnik dataset:

Quantile Errors [m]
25% 50% /5%
PoseNet + geometric loss - 7.9 -
Image Retpeva_l (No Pose 09 59 90
Estimation)
[Sattler et al., PAMI 2017] 0.5 1.3 5.0
[Zeisl et al., ICCV 2015] 0.2 0.6 2.1

[Sattler, Torii, Sivic, Pollefeys, Taira, Okutomi, Pajdla,Are Large-Scale 3D Models Really Necessary for Accurate Visual Localization? CVPR 2017]
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A Hard Example

[Walch, Hazirbas, Leal-Taixe, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017]
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A Hard Example

original PoseNet 1.87m, 6.140

PoseNet + LSTM 1.31m, 2.79°

|Sattler et al., PAMI

2017] StM failed

[Walch, Hazirbas, Leal-Taixe, Sattler, Hilsenbeck, Cremers, Image-based localization using LSTMs for structured feature correlation. ICCV, 2017]
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oD pose space
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My lake

e PoseNet + variants learn mapping from visual appearance to
oD pose space

* |n theory: Possible to learn camera pose regression (for
known camera intrinsics)

* |[n practice: Probably not enough training data to learn
mapping that generalizes away from training data

 Promising results for hard scenes in which feature-based
approaches falil

e \Why learn full pose estimation pipeline?
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Classic Localization Pipeline
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Classic Localization Pipeline
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Classic Localization Pipeline
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Classic Localization Pipeline
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Overview

.  CNNSs for Visual Localization

[I. CNNSs for Feature Detection & Description
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L earning Feature Detectors

e \What are properties of a good feature detector?
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L earning Feature Detectors

e \What are properties of a good feature detector?
o Repeatabillity, stability, viewpoint invariance
e Fire at “interesting regions” suitable for matching

e How to model this mathematically?

e How to train a detector from scratch without any bias to
existing solutions?

ETHzurich Torsten Sattler 18 CLAD s



Learning Feature Detectors

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Learning Feature Detectors

e Learn function H(x|w): R* — [-1, 1] with parameters w

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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L earning Feature Detectors
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e Learn function H(x|w): R* — [-1, 1] with parameters w
e |nteresting points are close to -1 or 1
e Repeatability = consistent ranking under transformations

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Learning to Rank

e | earn consistent ranking H(x|w):
' ' gy = ,\ '/\.\ \/, .‘ % N . *N: \ \ | ‘

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Learning to Rank

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Learning to Rank

e | earn consistent ranking H(x|w):
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[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Learning to Rank

e | earn consistent ranking H(x|w):
S—— ! y e Y /N \_¢ ‘?s: w %‘\ W AN
A , o ‘

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Learning to Rank

e | earn consistent ranking H(x|w):
S—— ! y e Y /N \_¢ ‘?s: w '.- N AN
- : Sy ‘ . a 3 h' , \‘
4 o & |

&

N
|w)) * (H( X |w) - H( | W)
A

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Learning to Rank

e | earn consistent ranking H(x|w):
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[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Learning to Rank

Hinge loss
[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Detection Results

Difference-of-
Gaussians

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Detection Results

Difference-of-
Gaussians

ours

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Matching Results
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Multi-Modal Features

[Savinov, Seki, Ladicky, Sattler, Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, CVPR 2017]
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Learning Patch Descriptors

e | earn mapping from patch to descriptor in R®

[Schonberger, Hardmeier, Sattler, Pollefeys, Evaluation of Hand-Crafted and Learned Local Features. CVPR 2017]
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e Popular approach: Learning via triplets

O Ll P R

triplet loss:
Ff\]lw pe € R  max(0,7+ ||[p1—p2||2 — |[n—p2||2)
w = o ERENE

[Schonberger, Hardmeier, Sattler, Pollefeys, Evaluation of Hand-Crafted and Learned Local Features. CVPR 2017]

ETHzurich Torsten Sattler 24 CLAD s




Learning Patch Descriptors

e | earn mapping from patch to descriptor in R®
e Popular approach: Learning via triplets
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Hand-Crafted vs. Learned Descriptors

e Comparing learned with hand-crafted descriptors (SIFT variants)
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Three Cases
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Three Cases

e \/isual Localization: CNN-based approach clearly
worse than state-of-the-art

e Feature detector learning: Similar to better
performance compared to state-of-the-art

e Feature descriptor learning: Hand-crafted descriptors
perform better for wide range of scenes

ETHzurich Torsten Sattler 26 CLAD s



Out with the OId? - Lessons Learned

e Hold off replacing everything with CNNs (at least for now)

ETHzurich Torsten Sattler 27 CLAD s



Out with the OId? - Lessons Learned

e Hold off replacing everything with CNNs (at least for now)
e Consider using a CNN if:

ETHzurich Torsten Sattler 27 CLAD s



Out with the OId? - Lessons Learned

e Hold off replacing everything with CNNs (at least for now)
e Consider using a CNN if:
e Current solutions do not perform well on your task

ETHzurich Torsten Sattler 27 CLAD s



Out with the OId? - Lessons Learned

e Hold off replacing everything with CNNs (at least for now)
e Consider using a CNN if:
e Current solutions do not perform well on your task

e Your task is rather specific, I.e., generalization is not
Important

ETHzurich Torsten Sattler 27 CLAD s



Out with the OId? - Lessons Learned

e Hold off replacing everything with CNNs (at least for now)
e Consider using a CNN if:
e Current solutions do not perform well on your task

e Your task is rather specific, I.e., generalization is not
Important

 You have enough training data

ETHzurich Torsten Sattler 27 CLAD s



Out with the OId? - Lessons Learned

e Hold off replacing everything with CNNs (at least for now)
e Consider using a CNN if:
e Current solutions do not perform well on your task

e Your task is rather specific, I.e., generalization is not
Important

 You have enough training data
e |n any case: Compare against simple baselines!
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