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Visual localization is the problem of estimating the po-
sition and orientation, i.e., the camera pose, from which
a novel image was taken with respect to some representa-
tion of a scene [6]. Visual localization is strongly related to
Structure-from-Motion (SfM) and Simultaneous Localiza-
tion and Mapping (SLAM) in the sense that all three aim to
determine camera poses in a scene. Also, the point clouds
generated by SfM and SLAM typically serve as the scene
representation for visual localization, while localization is
used to add additional images to a SfM model or to detect
loop closures in SLAM. All three techniques typically use
local image features such as SIFT [7] to establish correspon-
dences. In turn, these matches are used to estimate the ge-
ometric relationship between images or an image and a 3D
scene model.

Convolutional neural networks (CNNs) are a very pop-
ular class of deep learning techniques. They iteratively ap-
ply convolutions, followed by non-linear operators such as
rectified linear units or the hyperbolic tangent function, to
learn a desired function, e.g., to classify objects [5], based
on images as input. The power of CNNs lies in their abil-
ity to learn all parameters of the function from data rather
than relying on hand-crafted features. As such, they learn
features that are supported by evidence rather than using
features based on human intuition (which might sometimes
be wrong). As CNNs learn the desired function from data,
there is no guarantee that the learned function provides
meaningful results for inputs dissimilar to the training data.
Thus, CNNs typically require a significant amount of train-
ing data to handle unseen data and thus generalize well.

In recent years, the availability of large-scale datasets
such as ImageNet [10] and massive compute power in the
form of GPUs has led to a renewed interest in CNNs. As
a result of being able to train deep convolutional networks,
deep learning in general and CNNs in particular have revo-
lutionized many areas in Computer Vision: State-of-the-art
techniques for object detection [9], object recognition [2],
semantic segmentation [8], and single-view depth map pre-
diction [19] all use CNNs and significantly outperform pre-
vious (hand-crafted) approaches.

In the light of the rise of deep learning and CNNs, a

natural question is whether we should abandon our hand-
crafted pipelines for visual localization (and in extension
for SfM and SLAM) and replace them with learned alter-
natives. This extended abstract and the accompanying talk
thus focus on this question and summarize our experience in
this area: Sec. 1 considers the problem of learning visual lo-
calization in an end-to-end manner. Sec. 2 covers the prob-
lem of learning to detect local features via a CNN. Sec. 3
summarizes our findings when comparing learned feature
descriptors with hand-crafted ones. This extended abstract
is meant to give an overview over these three topics and
highlight the main ideas and insights. For details, please
see our original publications [13, 14, 17].

1. End-to-End Visual Localization
Traditionally, visual localization is solved in three

stages [6]: In an offline stage, a 3D scene model is build
and each 3D point in it is associated with the local image
features it was triangulated from. During online operation,
localization algorithms first extract local features from a
given query image. Nearest neighbor search with their cor-
responding descriptors then establishes a set of 2D-3D cor-
respondences between the features in the query image and
the 3D points in the scene model. Finally, the pose of the
query image is estimated by applying a perspective-n-point
pose solver inside a RANSAC loop [1].

Differing from this classical pipeline, Kendall et al. were
the first to approach the visual localization problem by train-
ing a CNN for camera pose regression [3, 4]. Their ap-
proach, termed PoseNet, essentially operates in two steps:
The first part of the network learns an embedding from the
space of input images into a 2048D space. This part is im-
plemented using an existing neural network [15] pre-trained
on the Places dataset [18]1. The second part, trained from
scratch, performs a linear regression from the 2048D space
into the space of camera poses. The network is trained by

1It has been shown that the features on the more shallow layers of
CNNs typically encode local appearance and geometry and thus are appli-
cable to other tasks as well. As such, it is common to fine-tune pre-trained
networks rather than training networks from scratch as this requires signif-
icantly less data.
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either minimizing the difference between the predicted and
the known ground truth pose [4] or by minimizing the re-
projection error for a set of 2D-3D correspondences known
for each training image [3].

We recently proposed a modification to PoseNet that sig-
nificantly improves the accuracy of the predicted poses [17].
In addition, we were the first to perform a comparison
against a state-of-the-art localization system based on hand-
crafted local features [11]. The results of that comparison
are rather unfavorable for PoseNet and its variants: Even
with our proposed modification, the camera poses predicted
by PoseNet are still up to an order of magnitude less accu-
rate compared with [11]. Results from another work [12]
suggest that PoseNet does not necessarily outperform an
even simpler pipeline: The baseline method uses image re-
trieval to identify the database image2 most similar to the
query. It then approximates the pose of the query image by
the pose of the retrieved photo.

These results suggest that PoseNet is not particularly ef-
fective at learning to localize images. Our conjecture is
that the mapping from image appearance to a 6DOF camera
pose is too complex to be learned from the few hundreds
to thousands training example typically available. As such,
PoseNet seems unsuited if high camera pose accuracy is re-
quired, e.g., in the context of Augmented Reality. However,
we observed some promising results in scenes that cannot
be handled by feature-based approaches [17]. For such sce-
narios, PoseNet could be a serviceable approach to obtain
coarse camera pose predictions.

A natural question is whether one wants to learn the
full visual localization pipeline. The problem of estimat-
ing a camera pose from a set of 2D-3D matches has a well-
understood mathematical theory and there exist computa-
tionally efficient solutions. Similarly, efficient and effective
algorithms for feature matching via nearest neighbor search
are known. Thus, it might be sufficient to only learn the
feature detection and description part of the pipeline. The
next two sections thus cover our work on learned feature
detectors [13] and descriptors [14].

2. Learning Feature Detectors

Feature detection is the problem of determining which
local structures in an image can be detected repeatably un-
der changes in viewing conditions while being ”interest-
ing” enough to produce good descriptors for matching. We
model this task as a ranking problem [13]: We want to learn
a ranking function H that consistently ranks ”interesting”
structures, i.e., local image patches, higher or lower than
”uninteresting” ones. A set of feature detections can then be
obtained by evaluating the ranking function for the patches

2Database images are those images used to reconstruct the 3D scene
model.

around each pixel in an image, performing non-extrema
suppression, and taking the top and bottom quantiles (ac-
cording to H) of the remaining pixels.

We model the ranking function via a CNN and train it
using quadruplets (p1, p2, T (p1), T (p2)) of patches. Here,
p1 and p2 are different patches from the same image while
T (p1) and T (p2) are versions of these patches undergo-
ing the same transformation (e.g., extracted from an im-
age taken from a different viewpoint). The network is then
asked to ensure that the relative ranking of the patches is
similar, i.e., that sign(H(p1)−H(p2)) = sign(H(T (p1))−
H(T (p2))).

One advantage of our approach is that is does not require
any pre-defined notion of what constitutes an ”interesting”
patch but learns a definition of ”interestingness” from data.
As such, our approach can be trained from data generated in
an unsupervised manner. Our results show that our method
outperforms the classical Difference-of-Gaussians detector
used by SIFT, both in terms of repeatability and matcha-
bility. In addition, we show that our approach can also be
applied for multi-modal data. For the latter, it is often hard
to develop an intuition about which structures can be cor-
related between different sensor modalities. Thus, learning
this correlation from data via our approach can be used to
potentially solve this problem.

3. Learning Feature Descriptors
The goal of feature descriptor learning is to learn an em-

bedding D : Rw×w → Rn of w × w pixel patches into a
n-dimensional descriptor space. This embedding should be
discriminative: Patches depicting the same physical struc-
ture should have very similar descriptors while patches de-
picting different structures should results in very dissimilar
descriptors. This behavior can be modelled mathematically
both based on tuples and triplets of patches [16], resulting
in (slightly) different performance. Training data is typi-
cally obtained from SfM: The transitivity of feature match-
ing is used to obtain pairs of correlated patches that cannot
be matched with existing techniques and can thus be used
to learn better descriptors.

Existing CNN-based approaches for descriptor learning
are typically evaluated on a patch retrieval task, where the
goal is to determine whether two patches depict the same
physical structure or not based on the learned descriptors.
The evaluation criterion is the false positive classification
rate at a recall of 95% for related pairs. Work on descriptor
learning shows that the learned descriptors outperform SIFT
under this metric.

Unfortunately, the false positive rate at 95% recall is not
necessarily a meaningful measure in the context of visual
localization or SfM, where one typically prefers a high pre-
cision of matches over a high recall. We thus evaluated
whether the good classification performance of learned de-



scriptors translates to a good performance in the context of
SfM [14].

Our results show that learned descriptors, while outper-
forming SIFT, do not necessarily perform better than ad-
vanced (but still hand-crafted) SIFT variants. In addition,
we noticed that learned descriptors exhibit a stronger varia-
tion in performance compared to hand-crafted features. We
attribute this performance to two potential factors: The loss
functions used for learning the descriptors might not be
suited for the matching algorithms used by SfM pipelines
and / or the learning process might not use enough training
data to sufficiently cover the space of patch appearance. In
any case, our results suggest that current learned descriptors
should not automatically replace hand-crafted ones.

4. Conclusion
Returning to the original question about replacing hand-

crafted localization (and SfM) systems with learned alter-
natives, the answer is clearly in favor of retaining parts of
existing methods. More precisely, the stage that estimates
the geometric relationships still seems to be required to pro-
duce accurate pose predictions. Based on our results so far,
learning this stage from scratch seems to require a massive
amount of data that is typically not available. However, it
makes sense to replace parts of the feature detection and
description pipeline. For the first part, feature detections,
we have clearly demonstrated the promise of using learn-
ing. For the second part, replacing feature descriptors, our
results suggest that hand-crafted descriptors still perform
better in general. However, this might change with more
training data becoming available.

Overall, we observe that deep learning and CNNs seem
to (currently) be less dominating in the areas of localiza-
tion and SfM compared to other research field in Computer
Vision.
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