Hyperspectral Systems: Recent Developments and Low Cost Sensors

56th Photogrammetric Week in Stuttgart, September 11 to September 15, 2017

Ralf Reulke

Humboldt-Universität zu Berlin Institut für Informatik, Computer Vision

DLR German Aerospace Center, Institute of Optical Sensor Systems,

DLR.de • Chart 2 > HSI > Reulke > 12.09.2017

Outline

- Motivation
- OS Heritage in Multispectral- and Hyperspectral Instruments
- Spectral Imaging
- Definition of Low Cost
- Snap shot Hyperspectral Systems
- Scanning Hyperspectral Systems
- Verification
- Example: DESIS
- Conclusion

Motivation of Hyperspectral Imaging (HSI)

HSI support Global Earth Management in the areas

- Biodiversity and Ecological Stability
- Climate Change
- Water Availability and Quality
- Natural Resources
- Earth Dynamics and Risks

Application of Hyperspectral Imaging (HSI)

- Airborne and space-borne hyperspectral imaging
- Crop stress analysis
- Machine vision QC
- Astronomy
- CCD/Display characterizations
- Semiconductor process control

DLR-OS Heritage in Multi- and Hyperspectral Systems

Earlier developments

- Fourier spectrometer on Venus mission VENERA 15 & 16
- Modular Optoelectronic Scanner on IRS-P3

Latest developments

- MErcury Radiometer and Thermal Infrared Spectrometer
- DESIS(DLR Earth Sensing Imaging Spectrometer)
- VIS/NIR Hyperspectral Mission EnMap FPA Development
- VIS/NIR S4 FPA Design and Verification

Spectral Imaging

- Spectral imaging is a combination of a spectral dispersive resolving element with an spatial resolving imaging system, $I(x,y,\lambda)$
- · Spectral scan methods with a set of color filter
 - circular-variable filter (CVF)
 - liquid-crystal tunable filter (LCTF)
 - acousto-optical tunable filter (AOTF)
 - CVF has mechanically moving parts, AOTF and LCTF are electro-optical components
- Spatial-Scan Methods
 - Dispersion of light is achieved by grating or a prism (or combination of both)
- Time-Scan Methods by superposition of the spectral and Fourier transformation of the acquired data (Fourier spectroscopy)
 - no filters, the spectrum is measured by using the interference of light

Detector Technology

Standard detectors:

• CCD (e.g. split chip technology from e2v for SENTINEL-4)

New developments:

- CMOS (e.g. ENMAP-Detector, back side illuminated, dual column on chip single slope ADCs)
- HgCdTe or mercury cadmium telluride (MCT): Teledyne provide with CHROMA one Detector for UV/VIS/NIR/SWIR spectral range
- Strained layer superlattice (SLS)-based detectors, operated at higher temperatures than HgCdTe or InSb, which result in improved size, weight and power (SWaP)

LC Hyperspectral Instruments

Definition of Low Cost

	Name	LC	Weight	
-	Instrument cost	++++	50 %	
-	Accommodation cost	++++	5 %	co 70 %
-	Test and Verification cost	+++	5 %	Ca. 70 /0
-	Documentation cost	++	10 %	
-	In-Orbit Commissioning Phase cost	-	5 %	
-	Mission Cost		25 %	
	- Operations			
	- Monitoring	+		
	- Calibration			

Statement: Clear we give something up, but we compensate by smart design and clever algorithms

Low Cost Hyperspectral Instruments

Low Cost Hyperspectral Systems (Snapshot System)

Tunable Filter - VariSpec:

- Liquid Crystal Tunable Filters
- Tunes in wavelength continuously over hundreds of nanometers
- Imaging quality
- No moving parts (and no image shift between different bands)
- Fast, random access wavelength selection
- Compact, low power design

Features

- VIS, SNIR, LNIR, XNIR
- 7, 10, 20, 0,25 and 0,75 nm (width at half maximum)
- 20 mm- or 35 mm-aperture

<u>https://lot-qd.de/en/news/product-application-news-spectrum/international-spectrum-e22/tunable-varispec-filter-covers-a-variety-of-spectral-ranges/</u>

Low Cost Hyperspectral Systems (Line Scan System)

Low Cost Hyperspectral Systems (Snapshot and Line-Scan System)

IMAC (https://www.imec-int.com/en/hyperspectral-imaging)

150+ bands line-scan spectral imager solution:

- Translation movement is needed to capture the hyperspectral image.
- (150+ spectral images of 2-4MPx resolution each after one single scan).
- Acquisition rate of 1360 lines/s

32 bands snapshot tiled spectral imager solution:

• For snapshot, IMEC has designed an imager with 32 spectral bands (within 600-1000 nm) having 256x256pixels spatial resolution each (30-60 data-cubes/s)

16 bands snapshot mosaic spectral imager solution:

• IMEC did process one spectral filter 'per-pixel' on a full mosaic of 4x4 = 16 spectral bands (within 460-630 nm) cameras integrated on one single chip

Comparison of a Grating Spectrograph and a Filter hyperspectral camera

- Grating Spectrograph is realized is based on Offner design
- Filter camera is an ultra compact system in comparison to the Offner-Spectrograph
- Both systems has the same detector and the same optics
- The spectral resolution of the Offner spectrometer is significantly better than that of the filter spectrometer.

Verification

The following physical quantities must be measured:

- Dark signal (DS) and DS non-uniformity
- Linearity, pixel related response (PRNU), non-linearity
- System gain
- Memory Effect / Remanence
- Cross –Talk
- Stability over 24 h
- Random Telegraph Signal (RTS)
- FPA LED Calibration
- Quantum Efficiency
- Defects (bad- and dead pixel)

DLR.de • Chart 16 > HSI > Reulke > 12.09.2017

Verification (SENTINEL-4), Experimental Setup

Verification (SENTINEL-4), Lineariy Measurement

- Linearity evaluation performed by integration time variation (ca. 100 steps) and fixed irradiance
- Shading from illumination have to be corrected
- Full well capacity (FWC) = 65,536 DN
- Signal derivation < 80 DN $\hat{=}$ 0.0013 %

Example: DLR Earth Sensing Imaging Spectrometer For the ISS-MUSES platform

- MUSES: Multiple User System for Earth Sensing
- Commercial imaging platform for International Space Station (ISS)
- Cooperation with Teledyne Brown Engineering
- Four instruments accommodation, robotically serviceable
- Instruments can be swapped
- MUSES platform was installed Mid 2017

DESIS Concept

Research Goals of DLR

Fluorescence:

e.g. Chlorophyll Fluorescence Effects on Vegetation (680-690-nm)

Night applications:

Spectral distribution (diffuse) night sky brightness in cities Cloud characterization over cities at night

Spectral characterization of cloud to cloud lightning

Combination DESIS with high resolution VIS:

What impact has the BRDF function

Influence of the surface BRDF used for atmosphere correction and better understanding of the atmospheric volume scattering

GSD: 30 m (400 km) Spectral Range: 400 – 1000 nm Spectral Resolution: 2.55 nm Nr. Channel: 235 1024 Pixel: +/- 40° BRDF Angle: MTF[NY]: >10%(System) SNR*: >150 (*: September 15, 11:00, 30° Sun)

Conclusion

- There are now a large number of hyperspectral cameras for airborne and space applications in the development and in part available
- Airborne cameras are now available with standard principles but also as a low cost application (line scan with filter camera)
- Space cameras are based on traditional principles (e.g. grating & Offner design), but we expect low cost cameras in the near future
- Initial investigations show that hyperspectral systems based on standard principles are much better than filter cameras
- The verification of the detector and the overall system is very complex and has to be handled adequately for hyperspectral systems
- It is necessary to clarify the conditions under which they can be used for different application

