DLR's Airborne F-SAR System

Andreas Reigber Microwaves and Radar Institute

Why Airborne SAR?

Advantages of airborne SAR:

- Higher SNR & resolution than spaceborne sensors
- Flexible operation of the sensor
- Experimental platform for new technology

For the Institute:

- Defining the "state-of-the-art" in SAR sensor technology
- Prepare future satellite missions
- Test and develop new signal processing algorithms
- Development and demonstration of new products and imaging techniques
- Execution of scientific flight campaigns

The Advanced Airborne Sensor F-SAR

Remarkable features:

- Very high resolution and SNR
- Multispectral operation (up to 4 bands)
- Polarimetry in all bands
- Single-pass interferometry at X and S-band
- Modular sensor design

•	F-SAR technical characteristics						
			Χ	С	S	L	Р
	RF [GHz]		9.6	5.3	3.2	1.3	0.35
	BW [MHz]		800	400	300	150	100
	PRF [kHz]		up to 12				
	Rg res. [m]		0.2	0.4	0.5	1.0	1.5
	Az res. [m]		0.2	0.3	0.35	0.4	1.5
	PoISAR		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Rg cov [km]	12.5 (at max.bandwith) 8 Bit real; 1000MHz; 4 channels.					
	Sampling						
٠.							

Main Goals:

- Defining the "state-of-the-art" in SAR sensor technology
- Scientific flight campaigns, preparation of new satellite missions
- New approaches by multispectral & high resolution PolSAR imaging

The Advanced Airborne Sensor F-SAR

F-SAR "in action" (mounted on research plane Do228)

Simulation of Future Spaceborne Products

Kaufbeuren (Germany) F-SAR, X-band quadpol (HH, VV, HV) 0.25m x 0.25m resolution

Simulation of Future Spaceborne Products

Oensingen (Switzerland) F-SAR, S-Band quadpol (HH, HV, VV) 0.5m x 0.65m resolution, 5 looks

Real-time Situation Monitoring

Slide 8

Real-time Situation Monitoring

InSAR: Generation of digital elevation models

InSAR: Generation of digital elevation models

DInSAR: Measurement of Ground Deformation / Motion

Polarimetric Interferometry: Estimation of Forest Height and Biomass

Polarimetric Interferometry: Estimation of Forest Height and Biomass

3D SAR Tomography

- Innovative method for3D-imaging
- Possible applications:
 - Vegetation structure, biomass
 - 3D City models
 - Archeology

Slide 15

Circular SAR Imaging

- Possibility of extremly high resolution (up to $\lambda/4$, i.e. about 6cm at L-band)
- Possibility of "holographic" 3D imaging
- Possibility of continous imaging ("video SAR")

Circular SAR Imaging: Continuous Monitoring

Polarimetric P-band Sounding

- Dedicated imaging mode for deep sounding of ice / bedrock structure
- Long wavelength can penetrate very deep in dry (i.e. cold) ice.
- Identical antennas as in SAR mode, but nadir-looking by modified feed network.

Holographic Ice Sounding / Multi-circular SAR

L-Band

P-Band

ARCTIC15 F-SAR CAMPAIGN April - May 2015 Kangerlussuaq / K-Transect Fully polarimetric HoloSAR images.

Pauli decomposition R,G,B = HH-VV, HV, HH+VV.

Bistatic SAR Imaging & Processing

- Development of synchronisation techniques in preparation of TanDEM-X
- Development of new processing concepts (BFFB - bistatic fast factorised back-projection)

monostatic bistatio monostatic bistatic azimuth resolution 0.5m

TerraSAR-X (Tx)

bistatic image

F-SAR (Rx)

Slide 20

Airborne-SAR Campaigns (since 2001)

- Agriculture (crop parameters, soil moisture)
- Forestry (forest heights and biomass)
- Surveys over sea and land ice
- Sea topography and oceanography

HelmholtzZentrum münchen Mission Proposal for Environment and Climate: Deutsches Forschungszentrum für Gesundheit und Umwelt Tandem-L ÜLICH HELMHOLTZ ZENTRUM FÜR UMWELTFORSCHUNG GEOMAR O'AVI GFZ Helmholtz-Zentr

Advanced high-performance SAR-Technology:

- Formation flight with two SAR-satellites
- Polarimetric interferometry and tomography
- Digital Beamforming with large reflector antenna

HELMHOLTZ

ASSOCIATION

F-SAR Campaign ARCTIC/DALOX (May 2015)

- **11 test-sites** in Greenland
- Analysis of several novel methods for the estimation of snow and ice parameters
- Evaluation of high-resolution SAR for security applications in Arctic environments
- Study of the stongly varying penetration capabilities of the different bands into snow and ice
- Demonstration of multi-spectral SAR data recording in 4 frequency bands
- Acquisition of unique data sets for further research

Helheim Glacier, differences in L-, S- and X- band. Fully polarimetric images. Pauli decomposition R,G,B = HH-VV, HV, HH+VV.

Helheim Glacier, differences in L-, S- and X- band. Fully polarimetric images. Pauli decomposition R,G,B = HH-VV, HV, HH+VV.

K-Transect - Percolation zone

Fully polarimetric images. Pauli decomposition R,G,B = HH-VV, HV, HH+VV.

Sea Ice between Greenland and North America Fully polarimetric images. Pauli decomposition R,G,B = HH-VV, HV, HH+VV.

Godhavn, X-band detail image, 25cm resolution Fully polarimetric images. Pauli decomposition R,G,B = HH-VV, HV, HH+VV.

BIOMASS: ESA Earth Explorer Mission

ESA EE-7 to map forest above-ground biomass and its changes

System:

- □ Fully-polarimetric P-band SAR
- 12 m reflector antenna
- Strip-map acquisition mode with 6 MHz bandwidth
- □ Spatial resolution: 60 x 50 m with 6 ENL

AGB(t/ha)

Launch planned for 2021

AfriSAR Campaign 2016

Goals:

- Preparation of ESA's BIOMASS mission
- Algorithm development for Tandem-L
- Various test-sites in Gabun (tropical rain forest)
- Cooperation with ESA, NASA/JPL, NASA/Goddard, Onera
- Extensive ground-truthing

Execution:

- Flight campaign by Onera in July 2015
- F-SAR campaign in February / March 2016
- Parallele flights by UAVSAR and LVIS in March 2016

Results:

- SAR acquisitions in L- and P-band quadpol
- Reflectivity, PolInSAR, Tomography
- Simulation of BIOMASS products
- Estimation of forest heights and biomass
- Evalutation and development of BIOMASS and Tandem-L algorithms

AfriSAR Kampagne: Kalibrierung

AfriSAR Campaign: Results

AfriSAR Campaign: P-Band Mosaic (7 tracks)

Current Developments: Digital Beamforming (DBF) Extension

Future	imaging mode (quad pol)				
Requirements	Mode X	Mode Y	Mode Z		
Resolution	5 m	1 m	<< 1 m		
Swath	400 km	100 km	30 km		
Orbit Duty Cycle	30 Minutes per Orbit				

Possibilities:

- Better radiometric accuracy
- Moving target detection
- Ambiguity suppression
- RFI suppression
- Adaptive & hybrid SAR imaging modes

• ...

F-SAR: Next Steps...

DBF-SAR: First X-band in-flight results (April 2017)

