54th Photogrammetric Week

Fast, Economic and Precise 3D Digitization of Cultural Heritage

Martin Ritz

Competence Center Cultural Heritage Digitization Fraunhofer Institute for Computer Graphics Research

Fraunhoferstraße 5 - 64283 Darmstadt - Germany

eMail: Martin.Ritz@igd.fraunhofer.de Web: <u>http://www.igd.fraunhofer.de</u>

Why Digitization?

2003 Earthquake – Bam, Iran, world's largest clay buildings

Fire – Herzogin Anna Amalia Library Weimar **2004**

Why Digitization?

2009 Collapse – City archives Cologne, 30 shelf-km destroyed

War – UNESCO World Cultural Heritage Timbuktu, Mali 2012

What has happened so far...

- Digitization (German ,Digitalisierung' / noun 'Digitalisat'):
 - Create a digital representation of real documents or artifacts
- Two-dimensional cultural artifacts:
 - Huge campaigns on national, European and worldwide level Goal: digitization of antique scriptures, writings and paintings e.g. German Digital Library (DDB), Europeana and Google Library Project, Microsoft Book Digitization Project
 - Within the last 10 years, a market of device manufacturers and service providers has emerged, accounting to several 100 million EUR in size, worldwide

Collection of antiquities SMB Inv.Nr. AvP VII 50

...and what about 3D?!

Three-dimensional cultural heritage:

So far only prestige objects:

1999 Stanford, Michelangelo, David statue; **2002**, Luebke, Monticello; **2005**, Guidi, "Plastico di Roma antica"; **2009**, Skyarc, Kasumi Tombs Uganda, UNESCO world heritage; **2008**, **2011**, Trigonart GmbH, Nofretete, Berlin

Staatliche Museen zu Berlin Preußischer Kulturbesitz

Status: Digitization of documents and artifacts

Three-dimensional cultural heritage artifacts:

- Small artifact series (e.g. Saxony State Office for Archeology ~7000 3D artifacts digitized)
- But: no strategic, integral approach for digitization and classification of museum stock or new entrants, historic sites, monuments or historic edifices

Status May 2012 – ENUMERATE EU Project (2012-2014):

- Only few 3D artifacts digitized compared to other artifact classes (books, paintings, photos)
 - → barely 1% of all digitized artifacts are 3D artifacts
- **34%** of museums hold a **digitization strategy**
- **23%** of museums hold a **long-term preservation strategy** for **digitizations**

So far: manual 3D digitization of artifacts

- Digitization using e.g.:
 - PolyMetric 3D Scanner PT-M (4 MPixel cameras, 35mm lenses) resolution down to 15µm
 - Manual (re-)positioning of scanner = 85% of time expenditure...

2012

3D digitization of the Berlin Rongorongo tablet

Competence Center Cultural Heritage Digitization

Berlin Rongorongo tablet

- 300 scans / 300 textures @ resolution 15µm
- Final computation in highest resolution
 - Machine: 2 x Xeon 3.2Ghz – 256GB RAM – 32 Cores
 - Computation time: 36 hours
 - Model size: 300 million triangles

© 2012 D.

Surface analysis of backside illuminated from right

3D surface analysis with curvature filter

Surface analysis

2012 D.I

0

Time expenditure today - V&A study: geometry and texture

Time expenditure today - V&A study: geometry and texture

Time expenditure today - V&A study: geometry and texture

What is missing? (e.g. from the perspective of the Berlin Museums)

- ~6 million artifacts
- 120,000 new entrants per year
- Quick estimation of effort...
 - 3D digitization of only the new entrants...
 - 120,000 / 365 days / 24 h / 60 min =
 - 0.228 objects/min = 4.38 min/object!!!
- Not feasible!
 Required: automated, scalable and economic 3D digitization processes!

- Cultural artifacts of worldwide heritage
- Back to 6000 BC
- More than 175 years museum history

First attempts of speeding up the process

- DOME:
 - University of Bonn, Prof. R. Klein
 - 151 Cameras and light sources
 - Geometry, texture and material property acquisition
- ORCAM:
 - DFKI, Prof. D. Stricker
 - Geometry, texture and material property acquisition
- Drawback:
 - Occlusions cannot be scanned
 - Processing time per artifact takes hours
 - Post-processing takes hours
 - Manual artifact placement and removal

Challenges

- Improved / simplified applicability of the technology
 - Geometry, texture, optical material properties acquisition
 - Cost reduction
 - Automatization
 - Scalability
- Improved workflows
 - Interdisciplinary knowledge transfer
 - Guidelines and best practices
- Projects with critical mass

Rongorongo tablet Ethnological Museum Berlin

Our Vision: Fully automated 3D Scanning Pipeline $CultLab^{3D}$

- Pass 0: New entries arrive at a museum archive / depot
 - Place series of artifacts on conveyor tablets
 - Place conveyor tablets on conveyor belt system
- Pass 1: Dome-like coarse scanner (patent pending)
 - Acquisition of geometry, texture and optical material properties using photogrammetric approaches (MVS, PS,...)
 - Pre-classification of incoming artifacts for semantically supported
 3D centered annotation
 - Iterative scan planning for consecutive pass in which occlusions are resolved

Our Vision: Fully automated 3D Scanning pipeline CultLab

- Pass 2: Compliant robotic arms with 3D scanners on end effectors at turntable
 - Resolve remaining occlusions based on iterative scan planning (pass1)
 - Add more detail to full 3D scan and semantic classification of artifacts
- Pass 3: Storage of real artifacts and virtual 3D models •
 - Move artifacts on conveyor tablets to storage vault
 - Post-process final 3D virtual models, annotate and store them in a Cloud-based Data storage vault (\rightarrow Fraunhofer Cloud)

Does this exist yet?

• Yes.

Visit us on...

Built Heritage

Culture & Traditions

Museums & Collections

Libraries & Archives

Art & Creativity

Goals of CultLab^{3D}

- Economic and fast digitization of 3D artifacts to the price of 2D
- True-to-original replicas of artifacts (geometry, texture, material properties) in different levels of detail for:
 - Archiving systems of museums / research / replication
 - Tourism and culture applications
 - Game industry
- Novel possibilities of applications for museums:
 - Hybrid exhibitions
 - Parallel availability of artifacts

Advantages of CultLab^{3D}

- Flexibility regarding artifact sizes
 - Automated acquisition pipeline (objects up to size 60x60cm)
 - Efficient coarse-scanner
 - On-demand scanning of remaining occlusions/cavities
 - Autonomous object-centric full acquisition
 - Any object size under 3m height
 - More to come for increased flexibility in...
 - Sizes
 - Material complexities

Technologies used in CultLab^{3D} (for coarse scanner)

Excursion: what if my MVS reconstruction is incomplete?

Multi-View Stereo (MVS) + Photometric Stereo (PS) ...to complete 3D geometry

Multi-View Stereo + Photometric Stereo

Multi-view Stereo (MVS)

o different perspectiveso same light position

Result based on lab-capturing

Results based on Real World data (webcam, 640x480 pix.)

Publication

Removing the Example from Example-Based Photometric Stereo

Jens Ackermann¹, Martin Ritz², André Stork², and Michael Goesele¹

¹ TU Darmstadt ² Fraunhofer IGD

Abstract. We introduce an example-based photometric stereo approach that does not require explicit reference objects. Instead, we use a robust multi-view stereo technique to create a partial reconstruction of the scene which serves as sceneintrinsic reference geometry. Similar to the standard approach, we then transfer normals from reconstructed to unreconstructed regions based on robust photo-

Removing the Example from Example-Based Photometric Stereo, Trends and Topics in Computer Vision, p. 197-210, vol. 6554, Springer, 2012

Enriching digitized artifacts – 3D centered documentation

3D Internet as a means of presentation and exploration

3D centered documentation

Fusing 3D/2D media-, meta- und provenience data

COFORM

3D centered documentation

2012 D. Fellr

0

Example: 3D annotation tool 3D-COFORM IVB (Integrated Viewer-Browser)

3D in the web browser

- From web sites to web applications Improved user experience
 - Today: Adobe Flash-based web sites
 - Tomorrow: Immersive in-browser 3D

- Increased interest for 3D
 - Product presentation
 - Visualization of abstract information (e.g. time diagrams, multi-dimensional data)
 - Immersive applications in culture and tourism

Example 3D-COFORM: browser for historic 3D objects

3D Internet: X3DOM – Declarative (X)3D in HTML5

- X3DOM := X3D + DOM
- DOM-based integration framework for declarative 3D graphics in HTML5
- Seamless integration of 3D content into the web browser

Example: 3D artifacts in Europeana

 \odot

Thank you for your attention.

Fast, Economic and Precise 3D Digitization of Cultural Heritage

Visit us on...

DEFINITION HERITAGE

Thank you for your attention.

Fast, Economic and Precise 3D Digitization of Cultural Heritage

Martin Ritz

Competence Center Cultural Heritage Digitization Fraunhofer Institute for Computer Graphics Research

Fraunhoferstraße 5 - 64283 Darmstadt - Germany

eMail: Martin.Ritz@igd.fraunhofer.de Web: <u>http://www.igd.fraunhofer.de</u>

Thank you for your attention.

