

Contour Flying for Airborne Data Acquisition

- Effects of terrain modulation in aerial survey
- "Terrain Following": Multiple Levels vs. Contour Flying
- Flight planning for Contour Flying
 - How to "translate" a DTM contour into a flying contour?
 - Practical constraints
- Contour flying with CCNS-5
- Case scenario

Terrain Following

Multiple Levels

Pro		Con	
•	Good resolution and overlap Constant altitude on line Well accepted in controlled / crowded airspace	 Larger flying effort Inhomogeneous GSD Redundant data due to unwanted overlap 	

Contour Flying

Pro	Con	
 Minimal flying effort Optimal resolution and overlap in whole area (depending on mission constraints) Enables optimal conditions for certain geophysical surveys 	 Changing the altitude permanently Additional stress for pilot Possible problems with ATC 	
		/

Flight Planning for CF – DTM Digital Terrain Model (DTM) Resolution / grid spacing Information / value quality of DTM at grid points: Interpolation mode for grid points: mean, maximum, spline? Quality in absolute value? What about solitary high objects: High antennas, wind turbines, industrial chimneys, power lines?

Climb / Descent Rate

Aircraft Type	Climb Gradient [m/km] (sea level)	Descent Gradient [m/km] (sea level)
Cessna 404	76	39
Cessna 402 STOL kit	68	37
Beechraft Queenair	58	37
BN Islander	115	74
Cessna Grand Caravan	99	62
AutoGyro Cavalon	120	120
Eurocopter ASTAR	247	165

Source: see references [1] and [7] in the paper

The max. climb/descent rate of the used aircraft has to be taken into account.

- \Rightarrow If it is not clear in which direction lines are flown use the lower value.
- \Rightarrow Wind has to be taken into account.

Contour Flying – Flight Guidance

Flying constant height levels (standard)

Direct commands for horizontal corrections. **Graphical prediction about future events.**

w.iai-systems.co

ALT DEV - current altitude deviation to next event

red- critical warning yellow - warning black - no warning

Planning Scenario Lantau I

30 % forward and side overlap DigiCam 50mm 20cm GSD

Planning Scenario Lantau

Example "Lantau Island" (Hongkong)

Comparison of

- GSD Distribution
- Flying Effort

Ground level range 0m – 880m Nominal GSD 20cm

Planning Scenario Lantau I

Fixed Level (no DTM used): Planned GL 700m

GSD ok: 18-22cm GSD low: < 18cm GSD high: > 22cm

Planning Scenario Lantau I

Fixed Level (no DTM used): Planned GL 700m

Flight Time: ~ 1h 50min

Exposures: 311

Planning Scenario Lantau II

Fixed Level (no DTM used): Planned GL 350m

GSD ok: 18-22cm GSD low: < 18cm GSD high: > 22cm

Planning Scenario Lantau II

Fixed Level (no DTM used): Planned GL 350m

Flight Time: ~ 1h 50min Exposures: 311

Planning Scenario Lantau III

Fixed Level (no DTM used): Planned GL 0m

Flight Time: ~ 1h 50min

Exposures: 311

Planning Scenario Lantau IV

Multi Levels: Planned Alt: 1600m , 1900m, 2200m

GSD ok: 18-22cm GSD low: < 18cm GSD high: > 22cm

<section-header><section-header><text><text><figure><image>

Planning Scenario Lantau V

Contour Flying: Ascent/Descent max. 100m/1000m, 80% Peak Focus

GSD ok: 18-22cm GSD low: < 18cm GSD high: > 22cm

w.iai-systems.co

Planning Scenario Lantau VI

Contour Flying: Ascent/Descent max. 100m/1000m, 50% Peak Focus

GSD ok: 18-22cm GSD low: < 18cm GSD high: > 22cm

w.iai-systems.co

Planning Scenario Lantau VI Contour Flying: Ascent/Descent max. 100m/1000m, 50% Peak Focus **GSD** Distribution 200 # 180 160 140 120 100 80 60 40 20 0 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 cm Flight Time: ~ 1h 50min Exposures: 308

Contour Flying for Airborne Data Acquisition

High resolution aerial survey in low altitudes suffers from the effect of terrain modulation. Adapting the flying height to the varying terrain height can improve data quality and the efficiency of the data collection.

The *CCNS-5* together with the *IGIplan* mission planning software provides tools to conduct efficient terrain following missions.

The practical applicability of this technique is mainly determined by safety constraints and by the local legal regulations.