

Remote Sensing vs. Photogrammetry ? Terminology

German Standard DIN 18716-3

"Remote sensing embraces all methods of acquiring information about the Earth's surface by means of measurement and interpretation of electromagnetic radiation either reflected from or emitted by it."

German Standard DIN 18716-1

"Photogrammetry deals with information on objects and processes, with special focus on the shape, size and position of objects in space. Preferable photographic imagery serves as information source. The images are taken by photogrammetric acquisition and processed in photogrammetric analysis."

Part 1 - Introduction

ifp

	ifp		Outline
	P.	$\begin{array}{c} y' \\ 0 & 1 \\ x'_0 \\ c_{k_1} \\ c_{k_1} \\ \end{array} $	Geometry perfect – Radiometry unknown ?
t		Part 1:	Introduction
Stuttgar		Part 2:	The manufacturer's perspective
versität		Part 3:	The user's perspective
Univ		Part 4:	The standard's perspective

s View	ifp The	Digit	al airbo Ev	rne imaging so volution of syst	ensor syste ems	ms
Manufacturer	Car pro	nera duct	Year of market	Image ext PAN (virtual, from 9	ension MS (original	Pixelsize @
art 2 – h	gen	eration	introduction	CCDs in 4 heads)	resolution)	sensor [μm]
ш	Ultr	aCam-D	2003	11500 x 7500pix 103.500x67.500 mm ²	3680 x 2400pix 33.120x21.600 mm ²	9.0
ttgart	Ultr	aCam-X	2006	14430 x 9420pix 103.896x67.824 mm ²	4810 x 3140pix 34.623x22.608 mm ²	7.2
ität Stur	Ultr	aCam-Xp	2008	17310 x 11310pix 103.860x67.860 mm ²	5770 x 3770pix 34.620 x 22.620 mm ²	6.0
Univers	Ultı Eaç	aCam- Jle	2011	20010 x 13080pix 104.052x68.016 mm ²	6670 x 4360pix 34.684 x 22.672 mm ²	5.2

Sensor	concept	Image size		#
		PAN	MS (original resolution)	camera heads
UltraCam-Eagle Vexcel Imaging	Frame Pan multi-head Virtual images	20010 x 13080pix @ 5.2μm	6670 x 4360pix @ 5.2μm, PAN:MS 1:3	4 (pan) 4 (MS)
DMC II 250 Intergraph/ZI	Frame Pan single head No virtual images	16768 x 14016pix @ 5.6μm	6800 x 6096pix @ 7.2μm PAN:MS 1:2.4	1 (pan) 4 (MS)
ADS80 Leica Geosystems	Line Single head Line images	12000pix @ 6.5μm (no staggering applied)	12000pix @ 6.5μm, PAN:MS 1:1	1

Part 3 – User's View

Universität Stuttgart

Independent evaluation of radiometric performance

Radiometric aspects of digital photogrammetric images (EuroSDR project)

Conclusions from questionnaire (as of 2009)

- Improvements are requested for the entire process: sensors, calibration, data collection, data post-processing, data utilization.
- Fundamental problems:
 - Insufficient information of radiometric processing chain
 - Inadequate radiometric processing lines
 - Missing standards (methods, calibration, targets, terminology)
- The basic radiometric end products requested by image users are true color images and reflectance images.
- Expected benefit of more accurate radiometric processing:
 - more automatic and efficient imagery post-processing
 - better visual image quality
 - more accurate, automatic interpretation, remote sensing use

Need for standards ? Example: Sensor calibration in US

geometric-calibration-and-validation-services-for-

aerial-mapping-cameras/

Navmatica Launches Geometric Calibration and Validation Services for Aerial Mapping Cameras

POSTED BY NAVMATICA ON MAY 9, 2011 IN NEWS | 0 COMMENTS

RICHMOND HILL, ON – Navmatica announced today the launch of new services for geometric calibration and validation of airborne mapping cameras. Services include In-situ camera calibration for analog and digital mapping cameras and independent accuracy validation of map products produced by airborne cameras.

With the recent announcement by the USGS at the ASPRS 2011 Conference in Milwaukee that they no longer intend to provide camera calibration or digital aerial type certifications past the end of 2012, anyone wishing to continue using their analog film camera will require it to be calibrated In-situ using a well-controlled photogrammetric process. Navmatica offers this service for customers so that they do not have to invest in developing an in-house process, and to ensure they obtain consistent, reliable results. Additionally Navmatica offers independent validation services on final map product accuracy that can be used to help "self-certify" a new digital sensor type.

"Navmatica has a long history in providing consulting services for photogrammetric mapping", said Dr. Mohamed Mostafa, Chief Technical Officer for Navmatica Corporation. "By tapping into this vast

experience we are able to offer geometric calibration and industry that are of the absolute highest quality standard. confidence they need to deliver geometrically accurate da

In-situ airborne camera calibration services include:

Ifp IIIUSTRATION OF GENERAL Status in digital airborne imaging with special emphasis on geometry and radiometry. Geometry was first – radiometry strongly evolving, but not yet nighlighted by system providers? Still some deficiencies / lacks of information (user's side / manufacturers side) which ask for further improvement, i.e. full understanding of camera radiometry but also on geometry Geometry perfect – Radiometry unknown? Yes? / No? / Perhaps?

Universität Stuttgart

ifp