

### Towards Complete LOD3 Models – Automatic Interpretation of Building Structures

Susanne Becker Institut für Photogrammetrie Universität Stuttgart

53. Photogrammetric Week, Stuttgart, 5.9.2011





**Universität Stuttgart** 

#### **3D City Models**

- Detailed facade models
  - Explicit facade geometry
  - Semantic information



#### New Applications

- Computer graphics, virtual reality
- Detailed urban planning
- 3D navigation
- Environmental simulations
- Energetic calculations
- Finite Elemental Analysis
- Building Information Models (BIM)



© 4Projects

3



#### **Data and Quality**

- Terrestrial LiDAR data from static or mobile laser scanning
  - Continuous improvement of data quality (e.g. accuracy, density)



- Partial occlusions due to obstacles
- Different number of scan periods
- Oblique viewing angles



⇒ Variation in resolution Variation in coverage











#### **Principles in Architecture**

- Architectural structuring
  - Overlay of several design layers (Breitling, 1982)



Horizontal and vertical structuring (Gestalt laws)



Functional and abstract elements (Burden, 2000)





form, colour, texture, ...

5



#### **Principles in Architecture**









- Window as key element of the facade design
  - Form and design of the window
  - Window size
  - Ratio of solid to void
  - Arrangement of windows
  - Symmetry
- Criteria for the style of a building:
  - Set of form elements, the repertoire (alphabet)
  - System of relationships and rules (syntax)



#### **Formal Grammar**

#### Formal Grammars

- Non-terminals V
- Terminals T
- Production rules P
  - id:  $lc < pred > rc : cond \rightarrow succ : prob$
- Axiom F (non-terminal defining the starting point)

#### Facade Grammar

- V, T ... basic facade parts
- F ... empty facade polygon
- P ... split rules, instantiation rules



**Combined Knowledge Propagation Algorithm** Cell Decomposition Knowledge Inference **Knowledge Propagation** Top-down prediction Extraction and modelling of Detection of facade geometries from repetitive features for completion terrestrial LiDAR data and structures Generation of Inference of rules synthetic facades **Universität Stuttgart** Facade data driven knowledge based





# Universität Stuttgart

#### **Searching for Terminals**

Knowledge Inference

#### Spatial Partitioning

- Segment the facade into floors by horizontal partition planes
- Divide each floor into tiles by vertical splits along the geometry borders
- Wall tiles, geometry tiles
- Classification of the tiles

| <b>w</b> <sub>1</sub> | g <sub>1</sub>        | W <sub>1</sub>        | <b>g</b> <sub>2</sub> | w <sub>1</sub> | <b>9</b> <sub>1</sub> | w <sub>1</sub>        | <b>g</b> <sub>1</sub> | W <sub>1</sub>        | <b>9</b> <sub>1</sub> | W <sub>1</sub>        |
|-----------------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| W <sub>1</sub>        | <b>9</b> <sub>1</sub> | <b>w</b> <sub>1</sub> | g <sub>2</sub>        | W <sub>1</sub> | <b>9</b> <sub>1</sub> | <b>w</b> <sub>1</sub> | <b>9</b> <sub>1</sub> | W <sub>1</sub>        | <b>g</b> <sub>1</sub> | W <sub>1</sub>        |
| W <sub>1</sub>        | <b>g</b> <sub>1</sub> | <b>w</b> <sub>1</sub> | <b>g</b> <sub>3</sub> | w <sub>2</sub> | 91                    | <b>W</b> <sub>1</sub> | <b>9</b> <sub>1</sub> | <b>W</b> <sub>1</sub> | <b>9</b> <sub>1</sub> | <b>W</b> <sub>1</sub> |









.



#### Interrelationship between Terminals Knowledge Inference

Example: first floor Prinzenbau, Schillerplatz, Stuttgart



 $SW_1 \rightarrow w_1 \; g_1 \; w_3 \; g_1 \; w_2 \; g_1 \; w_3 \; g_1 \; w_2 \; g_1 \; w_3 \; g_1 \; w_1 \; g_1 \; w_3 \; g_1 \; w_2 \; g_1 \; w_3 \; g_1 \; w_2 \; g_1 \; w_3 \; g_1 \; w_2 \; g_1 \; w_3 \; g_1 \; w_3 \; g_1 \; w_2 \; g_1 \; w_3 \; g_1$ 





## **Universität Stuttgart**

ifp

#### Inference of Production Rules

Knowledge Inference

- Terminals  $T = \{w_1, w_2, ..., g_1, g_2, ...\}$ , non-terminals  $N = \{W, G, ..., S_1, S_2, ...\}$
- Production rules P={p<sub>1</sub>,p<sub>2</sub>,...,p<sub>5</sub>}:

  - $p_2$ :  $W: c_2 \rightarrow W G W: P(\underline{x}|p_2)$
  - $p_3$ :  $G: c_3 \rightarrow S_i: P(\underline{x}|p_3)$
  - $\qquad \qquad p_4 \colon \ \ \textbf{G} \, \colon \textbf{c}_4 \to \textbf{g}_i \, \colon \textbf{P}(\underline{\textbf{x}}|\textbf{p}_4)$
  - $p_5$ :  $\Re_1 < W > \Re_r : c_5 \rightarrow w_i : P(\underline{x}|p_5)$
  - $\qquad \qquad \textbf{p}_6 \colon \quad \kappa_l^{(n)} < \textbf{W} > \epsilon : \textbf{c}_6 \rightarrow \kappa_{\cdot l}^{(n-1)} : \textbf{P}(\underline{\textbf{x}}|\textbf{p}_6)$

Spatial Partitioning

Structural Inference

Terminal Inference

Structural Inference

13



#### Combined Knowledge Propagation Algorithm

#### Cell Decomposition

- Extraction and modelling of facade geometries from terrestrial LiDAR data

#### Knowledge Inference

- Detection of repetitive features and structures
- Inference of rules

Facade

#### Knowledge Propagation

- Top-down prediction for completion
- Generation of synthetic facades



data driven

knowledge based

**Universität Stuttgart** 





#### **Production Process**

**Knowledge Propagation** 

Generation of synthetic facade structures based on facade grammar

- Production Process
  - Start with axiom ω: F
  - Select non-terminal for substitution
  - Select rule with highest probability
  - Generate tile string by character replacements

| Facade String                 | Applied rule types  |  |  |  |
|-------------------------------|---------------------|--|--|--|
| F                             | $F \to W$           |  |  |  |
| W                             | $W \to W \; G \; W$ |  |  |  |
| WGW                           | $G \to g_1$         |  |  |  |
| $W g_1 W$                     | $W \to W \; G \; W$ |  |  |  |
| $W G W g_1 W$                 | $W \rightarrow w_1$ |  |  |  |
| $w_1 \stackrel{G}{G} W g_1 W$ | $G \to g_2$         |  |  |  |
| $w_1 g_2 W g_1 W$             | $W \rightarrow w_1$ |  |  |  |
| $w_1 g_2 w_1 g_1 W$           | $W \to W \; G \; W$ |  |  |  |
| $W_1 g_2 W_1 g_1 W G W$       |                     |  |  |  |
|                               |                     |  |  |  |
| $w_1 g_2 w_1 g_1 w_1 g_1 w_1$ |                     |  |  |  |

45



#### Grammar-based Completion Knowledge Propagation

- Facades may contain areas where no or little sensor data is available due to scan configuration
- Grammar based completion
  - Grammar inference restricted to dense areas:
  - Generate point-distancemap
  - Determine dense area









#### **Grammar-based Completion**

**Knowledge Propagation** 

- Facades may contain areas where no or little sensor data is available due to scan configuration
- Grammar based completion
  - Grammar inference restricted to dense areas:
  - Generate point-distancemap
  - Determine dense area
  - Use dense area as a mask to select facade geometries for knowledge inference
  - Apply grammar to free areas



47



#### Results Knowledge Propagation

Terrestrial LiDAR data (StreetMapper)



Residential house



Office building



Red House Farm, Newcastle













#### Conclusions

- Automatic approach for the reconstruction of complete 3D facade models
  - Automatic inference of individual facade grammars representing buildingspecific facade characteristics
  - Generation of **realistic facade structures** even in areas with inaccurate, noisy or incomplete sensor data
  - Robustness against data of heterogeneous quality
  - Synthetic facade structures for facades not covered by any sensor data
- Extension and abstraction of the facade scenario to city models
  - Hierarchical graph-based modelling structure for urban environments
  - Network of geometrical and topological relationships
    - ⇒ facilitates the analysis and preservation of **geometrical consistency**
    - ⇒ allows for the derivation and modelling of higher-order dependencies



#### Institut für Photogrammetrie

#### Thank you for your attention!

susanne.becker@ifp.uni-stuttgart.de

