Towards the Automated Construction of Digital Cities

Jürgen Döllner

Hasso-Plattner-Institut University of Potsdam, Germany

1 Introduction **3D Geospatial Models** Virtual globes Virtual regional models Virtual landscape models Virtual city models . In HAITING ΗP

1 Introduction

3D Geospatial Models as Mainstream Technology

- Reaching the realm of end-users:
 - Google Earth/Maps,
 - Virtual Earth/bing,
 - SecondLife,
 - Twinity,
 - ...
- Example: Twinity an online platform using a 3D geospatial model based on realworld street and building data

1 Introduction

3D Geospatial Models as Integration Frameworks

- Represent spatial objects, structures, relations, processes, and phenomena
- Basic components are described by geometry, topology, appearance, and semantics
- Enable fusion of complex, heterogeneous, distributed geodata and georeferenced data at the visualization stage
- Geovirtual 3D environments represent uniform, general-purpose frameworks for seamlessly integrating and effectively using complex geoinformation
- Enable *holostic understanding* of complex spatial and spatio-temporal phenomena by means of visualization

1 Introduction

Towards Automated, Computational Techniques

Various constraints/conditions need to be fulfilled:

- Topological data with defined relations to geometry data
- Geometry data with defined quality (precision, degenerations, meshing, ...)
- Semantics with defined relations to geometry and topology
- Multiresolution and homogeneous level-of-detail management
- ...

2 Automated Data / Object Generation

Surface Texture Synthesis based on Pictometry Data

- Pictometry delivers highly redundant aerial visual information
- Information can be used to synthesize completely new pseudo-photographs for almost all surfaces of a geovirtual 3D environment
- Principle:
 - For a given surface, consider a subset of potentially relevant oblique images
 - For each surface fragment, determine the best source, taking into account resolution and distance to an oblique image and occlusion by scene elements

2 Automated Data / Object Generation

Surface Texture Synthesis based on Pictometry Data

- Oblique images cannot reach all parts of all surfaces to a sufficient degree (or at all)
- · Error metrics ensures that those areas can be identified

2 Automated Data / Object Generation

Surface Texture Synthesis based on Pictometry Data

Example: 3D Model of Leipzig, Germany, textures are automatically produced (without any manual modeling) based on Pictometry datasets

21.05.2009

HP

3 Automated Data Fusion

Characteristics of Geovirtual 3D Environments

- Mainly composed of CAD/GIS/BIM data
- Successful media for communicating geospatial information
- Support of naïve geography
- Intuitive and effective user interfaces
- System component in complex workflows in a growing number of application domains

21.05.2009

Jürgen Döllner www.hpi3d.de

3 Automated Data Fusion

Integrating Georeferenced Information

- GeoVEs serve as tools to seamlessly integrate georeferenced information using the underlying 3D geospatial model as general-purpose reference surface and scenery
- Example: frequency of pedestrians & car drivers along major roads

HP

HP

3 Automated Data Fusion

Integrating Georeferenced Information

Example: visualization of traffic activity by static glyphs

21.05.2009

Jürgen Döllner www.hpi3d.de

3 Automated Data Fusion

Integrating Georeferenced Information

Example: Visual spatial data mining

HPI

HPI

11

4 Automated Generalization of 3D Contents

Generalizing 3D Geospatial Models

- Goal: Reducing the complexity of detailed, high-resolution 3D models
- Approach: (1) Defining cell structures, (2) generalizing cell contents, (3) outliner management

4 Automated Generalization of 3D Contents

Generalizing 3D Geospatial Models

- Goal: Reducing the complexity of detailed, high-resolution 3D models
- Approach: (1) Defining cell structures, (2) generalizing cell contents, (3) outliner management

14

4 Automated Generalization of 3D Contents

Generalizing 3D Geospatial Models

 Generalized 3D models are required to provide simulation and analysis systems a uniform, homogeneous access to geospatial data

4 Automated Generalization of 3D Contents

Generalizing 3D Geospatial Models

18

HPI

5 Service-Based Systems and Applications

SOA Paradigm to Construct Complex Systems

6 User Interface Technology

UI for Non-Desktop-Applications/Systems

21.05.2009

20

Jürgen Döllner doeliner@hpi.uni-potsdam.de

Publictions and projects, see www.hpi3d.de

21.05.2009

Thank you!

About HPI

Background

Research Topics

- Computer Graphics & Real-Time Rendering
- Visualization & Information Visualization
- Geovisualization

Hasso-Plattner-Institute

- University of Potsdam
- Studies in IT Systems Engineering
- 80+60 students accepted each year
- Privately founded research institute

Computer Graphics Division

- Started in 2001
- Dedicated research unit "3D Geoinformation" (2007-2011)
- · Jointed research with major companies
- 21.05.2009

1 Introduction

Contributions for 3D Geovirtual Environment Technology

A few main areas that contribute: (incomplete, unordered)

- Photogrammetry
- Geography
- Engineering/Archicture/Design
- Botany/Environmental Sciences
- Cartography
- Computer Graphics
- Scientific Visualization
- Databases
- Service-Oriented Systems
- WWW

HP

HPI 23