The 3D Berlin Project

Martin Kada

Institute for Photogrammetry University of Stuttgart

Project Implementation

- virtualcitySYSTEMS, Dresden
 - Reconstruction of 3D building geometry in LOD 2 from given LIDAR data and ground plans
 - 3D Geo, Potsdam (now part of Autodesk)
 - Texturing using oblique aerial images
- Starsoda, Berlin
 - Manual modeling of landmarks

Autodesk^{*}

Universität Stuttgart

ifp

Project Consultants

Potsdam University

ifp

- Hasso-Plattner-Institute
- Talk of Prof. Döllner on Friday

University of Bonn

Institute for Cartography and Geoinformation

Technical University of Berlin

- Department for Geodesy and Geoinformation Science
- Talk of Prof. Kolbe on Thursday

Overview of the Reconstruction Approach

- Automatic reconstruction of building geometry in LOD 2 from
 - LIDAR point clouds
 - Ground plans

ifp

- Generate a decomposition of the building's footprint into disjoint (mostly quadrangular) cells → Generalization
- 2. Classify the LIDAR points inside the cells according to the orientation of their locally estimated planes
- 3. Find for each cell a standard roof shape that best fits the points

1. Generation of the Cell Decomposition

- 1. Create decomposition lines from the line segments ...
- 2. ... and split the enlarged bounding box of the footprint along these lines
- Identify the cells with a high overlap with the original footprint
 - Too many small cells

Universität Stuttgart

 Create decomposition lines that approximate the line segments

- 2. ... and split the enlarged bounding box of the footprint along these lines
- 3. Identify the cells with a high overlap with the original footprint
 - The deviation from the original ground plan is half the generalization distance

1. Generation of the Cell Decomposition

 Decomposition lines are adjusted so that they are perfectly parallel and form right angles

Universität Stuttgart

ifp

ifp

Universität Stuttgart

Overview of the Reconstruction Approach

- Automatic reconstruction of building geometry in LOD 2 from
 - LIDAR point clouds
 - Ground plans

ifp

- Generate a decomposition of the building's footprint into disjoint (mostly quadrangular) cells → Generalization
- 2. Classify the LIDAR points inside the cells according to the orientation of their locally estimated planes
- 3. Find for each cell a standard roof shape that best fits the points

2. Classification of Points

- Compute normal direction for each point
 - Estimate a local plane from the point's k-nearest neighbors
 - Points from small features or near break lines are smoothed out

Classify the points according to border lines of the cell

Universität Stuttgart

ifp

Universität Stuttgart

Overview of the Reconstruction Approach

- Automatic reconstruction of building geometry in LOD 2 from
 - LIDAR point clouds
 - Ground plans

ifp

- Generate a decomposition of the building's footprint into disjoint (mostly quadrangular) cells → Generalization
- 2. Classify the LIDAR points inside the cells according to the orientation of their locally estimated planes
- 3. Find for each cell a standard roof shape that best fits the points

3. Roof Shape Fitting

- Every roof shape can be composed of one or more planar faces
 - When seen from above, it is a 2D decomposition of the roof area
- Test all roof shape against each cell …
 - 1. Create the 2D roof decomposition of the cell
 - 2. Assign the LIDAR points to the associated polygon
 - 3. Count the number of points with the correct slant direction
- Cell gets the roof shape with the highest point count

Eastern districts

ifp

- March 2008 July 2008
- 244,000 buildings

Western districts

- November 2008 February 2009
- 228,000 buildings
- ... covering a total area of 857 km²
- Degree of achieved automation
 - 70% 80% for inner city areas
 - 80% 85% for residential areas

Universität Stuttgart

- 80 landmarks were modeled by hand
 - 5 buildings can be virtually visited
 - Olympiastadion
 - Sony Center
 - Reichstag
 - DZ Bank
 - Berlin Hauptbahnhof

💓 Universität Stuttgart

Universität Stuttgart

New reconstruction module for high density data

- Segmentation of LIDAR points
- Ridge line detection
-

