Advanced Matching Techniques for High Precision Surface and Terrain Models

PHOWO 2009 Prof. Dr. Eberhard Gülch

PHOWO 2009

Introduction

- Comeback of image matching for DTM & DSM generation
 - Very few professional tools for DSM generation from image matching
 - Several interesting research approaches, partly 10 years old
 - MATCH-T DSM can produce very dense point clouds specially designed for urban areas
- Competition to LiDAR point clouds
 - Big potential in urban areas
- Digital filmless cameras offer new potentials for matching

Overview

Topics

- Top 1: MATCH-T DSM Advanced matching features
- Top 2: Quality of DTM/DSM from MATCH-T DSM
- Top 3: Change detection in open pit mining using MATCH-T DSM and SCOP-Poly
- Top 4: Building extraction with point clouds & ground plans using Building Generator
- Top 5: Improved point cloud classification by image support

Conclusions

Prof. Dr. Eberhard Gülch

3

PHOWO 2009

Top 1: MATCH-T DSM - Features

Improved "Model"- selection

- Individual model search for each "computation unit"
- Sort sequence according to suitability
 - Angle of incidence
 - Model area
- Sequential multi-image matching

Robust filtering in 3D

MATCH-T DSM - Robust 3D filtering

Raw point cloud

Filtered point cloud

(Lothhammer, 2008)

Prof. Dr. Eberhard Gülch

Top 2: Quality of matched DTM/DSM

- Application in open pit mining
- Images + reference data by courtesy MIBRAG mbH
- 4 standard flights + 2 special flights
- Comparison to (manual) reference data

(Zheltukhina, 2009)

Prof. Dr. Eberhard Gülch

PHOWO 2009

Test data sets – Courtesy MIBRAG

4 Standard data sets June-September '08

2 Special data sets October + November '08

Number of strips	4	Number of strips	7
Number of images	98	Number of images	351
Photo scale	10 000	Basis along the flying direction	180 m
Basis along the flying direction	375 m	Basis across the flying direction	625 m
Basis across the flying direction	1275 m	Forward overlap	80 %
Forward overlap	60 %	Side overlap	62 %
Side overlap	23 %		
Extension of the area West- East	12 500m	RMS at check p	oints
Extension of the area North- South	7700m	Y: 0,052 m Y: 0,045 m	
Mean terrain height	150 m	$\sigma_0 = 0.2 \text{ pixel (1)}$	pixel = 0.12m)

Reference data

MIBRAG

- Manual stereo DTM
 - Break-lines
 - Spot heights
- Check points

HFT

- Manual stereo DTM
 - Single points
 - Break-lines

Example of reference data by MIBRAG overlayed on orthophoto (June 08)

Examined: shadowed steep slope with overlayed check points

- Analysis of parameter selection
- Quality analysis
- DTM and DSM results

(Zheltukhina, 2009)

MATCH-T DSM – DTM/DSM

- DTM grid size 15cm undulating
- MIBRAG break-lines overlayed
- <u>DSM</u> grid size 15 cm Profile view with MIBRAG reference break-lines

(Zheltukhina, 2009) Prof. Dr. Eberhard Gülch

PHOWO 2009

Investigations on accuracy for different parameter settings

 Default settings for DTM and DSM very suitable

11

Customization did not really improve

General	Generating	RMS	Max	Min
Information	Strategy	[m]	[m]	[m]
	MIBRAG DTM	(0,945)	(3,480)	(-0,826)
June, 2008	dTm_extreme	0,286	0,741	-0,717
40 check points	dTm_customized	0,342	0,931	-0,972
grid 0.15m	dSm_undulating	0,213	0,530	-0,615
	dSm_customized	0,192	0,682	-0,531

Remark: MIBRAG result not representative for this part due to generalization effects

Prof. Dr. Eberhard Gülch

RMS (height) of derived DEMs compared to manual HFT check points – all flights

Prof. Dr. Eberhard Gülch

Prof. Dr. Eberhard Gülcl

13

PHOWO 2009

Influence of overlap parameters

Standard flight (60%/23%)

- Mostly matching unit determined from 1 model only
- 24.9 3D points per mesh

Number	of	not processed MŪ (no model)	:	220	
Number	of	processed MU	-	7556 /	(100.0 [%]
Number	of	1 - fold determined MU		7482 /	99.0 [%]
Number	of	2 – fold determined MU		60 /	0.8 [%]
Number	of	3 – fold determined MU		12 /	0.2 โ%โ
Number	of	4 – fold determined MU		2 /	0.0 [%]

Special flight (80% / 62%)

- Many fold determined matching units
- 82.7 3D points per mesh

Number of	25 - fold	determined MU	, i	855	0.2 [%
Number of	24 - fold	determined MU	j j	772	0.1 %
Number of	23 - fold	determined MU	Ū Ū	196	′ 0.0 ľ%
Number of	22 - fold	determined M	í l	168 (′ ŏ.ŏ ŀ%
Number of	21 - fold	determined M	í l	575 (′ ñ ñ ľ%
Number of	20 - fold	determined M	í	203 /	′ ∩ ∩ Γ%
Number of	19 - fold	determined M	í	263	/ 0.0 [%]
Number of	18 - fold	determined M	, I	304	/ 0.1 [%]
Number of	17 - fold	determined M	, I	495,	/ 0.1 [%]
Number Of	16 fold	determined Mu	· •	033 /	/ 0.1 [%]
Number of	14 - TOTO 15 fold	determined Mu	<u>ر</u>	848 /	/ 0.2 [76 / 0.1 [%]
Number of	13 - TOIQ	determined Mu	<u>ر</u>	1244 ,	/ 0.2 [76
Number of	12 - Told	determined MU	<u>ر</u>	1838 /	0.3 [%,
Numper of	11 - Told	aetermined Mu	, L	2600 /	0.5 [%
Numper of	TO - LOID	determined MU	, i	4017 /	0.7[%
Number of	9 - told	determined MU	i i	6910 ,	1.2 [%]
Number of	<u> 8 – fold</u>	determined MU	J I	13804 /	2.4 [%]
Number of	7 - fold	determined MU	J I	, 22938	4.1 [%
Number of	6 - fold	determined MU	J	46618 ,	8.3 [%
Number of	5 – fold	determined MU	J	39816 /	(7.1 [%]
Number of	4 – fold	determined MU	J L	410169 ,	′ 72.8 [%]
Number of	3 - fold	determined MU	J L	4 /	′ 0.0 [%]
Number of	2 - fold	determined MU	נ	5 🥍	′ 0.0 [%]
Number of	′1 – fold	determined MU	נ	5)	′ 0.0 [%]
Number of	processed M	10	:	563698 /	′ 100.0 F%

Discussion of Top 2 - Quality

DTM/DSM

- Quality compares to manual measurements
- DSMs partly more detailed than reference data
- DSM performs slightly better than DTM parameters in the examined cases

Matching parameters

- Customization does not bring real advantages
- Standard parameter settings can be used

Higher redundancy by

- Multi-image matching
- Usage of 12 bit information (Heuchel 2005)

Prof. Dr. Eberhard Gülch

PHOWO 2009

Top 3: Detection of changes

Input

- Assessing accuracy of DSM (cf. above)
- Sequence of 2 DSMs (using 45cm grid spacing)

Workflow

- Calculate difference model (SCOP++ 5.4)
- Accuracy of DSM used to detect significant changes (SCOP Poly)
 - Cutting/Filling threshold +/- 0.3m
 - Area threshold >4500m²
- Results
 - Polygons around changed areas
 - Difference DSM and volume determination (cutting/filling)
 - Statistical reports and visualization

Difference model (Oct-Nov 80%/62%)

Automatically created DSMs

- Unchanged (green) between -0.3m and 0.3m
- Cutting (orange) and Filling (blue)

18

Polygons of changes – Filling (Oct.-Nov.)

- Polygons generated from difference DSMs and overlayed on difference model from MIBRAG DTMs z: 0,000 1
- Filling threshold -0.3m, area threshold >4500m²

Analysis of Cutting and Filling (Oct.-Nov.)

MIBRAG – DTMs

- Manual measurement and manual exclusion of machines
- Automatically generated DSMs
 - Manual deletion of 5 polygons indicating single machines.
 - Results still contain machines moving during/inbetween flights

	Volume m ³	Volume m ³ Volume m ³		Volume in %
	MIBRAG DTMs (manual)	HFT MATCH-T DSMs (automatic)	Difference MIBRAG-HFT	Difference (MIBRAG=100%)
Filling	4296235	4287573	8662	0.2%
Cutting	5198767	5135589	63178	1.2%
	Prof. Dr.	Eberhard Gülch	20	PHOWO 2009

Top 3: Discussion

Simplicity of workflow

- Definition of 1 working area
- Running Match-T DSM on whole area for 2 periods
- Compute difference DSM
- Running Scop Poly on difference DSM
- Editing single polygons
- Computation of volumes
- SCOP Poly (Add-on) assists in detecting changes in difference DSMs
 - Simple editing of automatically generated polygons
 - No manual digitization and exclusion from matching

	Prof. Dr.	Eberhard Gülch	:
--	-----------	----------------	---

PHOWO 2009

Top 4: Building extraction

- Objective: building models for large areas
 - Focus on LoD 2 (and LoD 1) (cf. CityGML)
 - Model driven approach
 - Modelling by pre-defined parameter sets

Input

- Match-T DSM and LiDAR point clouds
- Building ground plans
- Step procedure

Prof. Dr. Eberhard Gülch

Building Generator – 3 steps

Ground plan generalization

- Analysis of ground plan structure
- Division: Rectangle, L, T, U, complex shape

Segmentation

- Surface points in a ground plan polygon
- Adjustment of points to plane segments
- Modelling
 - LoD 2 (basic primitives) or LoD 1

Л

Prof. Dr. Eberhard Gülch

23

Building Generator - Building models for LoD2

Flat roof

Lean-to-roof

Saddleback roof

Tent roof

Hip roof

Sparse point cloud

Dense point cloud

(Grau, 2008)

Prof. Dr. Eberhard Gülch

24

Building Generator - Subdivision of complex boundaries

Building Generator - Test areas

• Graz

- Dense
- Complex roof types and ground plans
- Toulouse
 - Sparse, single houses
 - Simple structures
- Bautzen
 - Dense
 - Complex roof types and ground plans

Prof. Dr. Eberhard Gülch

26

Building Generator – Ground plans

 Manual measurement of 334 buildings (map data not accessible)
 Classification into shapes:

	Shape categories				
Test data	Rectangle	Complex			U
Graz (Match-T)	39	9	28	9	17
Toulouse (Match-T)	92	12	19	5	2
Bautzen (LiDAR)←───	59	7	28	5	3
Bautzen (Match-T)	39	5	20	2	2

Prof. Dr. Eberhard Gülch

27

PHOWO 2009

Building Generator - Point cloud structure

 Relative point density [points/m²)
 76
 11
 5

 Prof. Dr. Eberhard Gülch
 28

PHOWO 2009

11

Building generator - Success rates

Test area	Graz	Toulouse	Toulouse Bautzen		utzen
Point cloud	Match-T	Match-T		Lidar	Match-T
Rectangle shape	66,67%	95,65%		76,27%	60,26%
L-shape	25,00%	94,74%		42,86%	27,50%
T-shape	77,78%	100,00%		60,00%	50,00%
U-shape	17,65%	100,00%		33,33%	25,00%
Complex shape	11,11%	66,67%		28,57%	20,00%
Time/Building [sec]	44,45	2,20		1,96	4,41

Mean values (Median) of the LoD2 results in percent based on investigations of 40 different parameter combinations and average extraction time

Prof. Dr. Eberhard Gülch	29	PHOWO 2009
--------------------------	----	------------

Building generator - Discussion of parameter settings

Segmentation step:

- Essentially only 3 parameters are important
- Parameter value selection needs knowlege on the structure of the point cloud

Generalisation step:

- Not very sensitive to parameter changes
- Subdivision of very complex shapes necessary

General observation:

- Building complexity decisive for parameter selection

Top 4: Discussion

- Match-T point cloud well suited for building modeling
- Success rates can reach level of building generation using LiDAR point cloud
- Parameter selection reduced to few decisive ones; still needs improvements
- Dependencies on ground plans should be reduced

Prof. Dr. Eberhard Gülch

31

PHOWO 2009

Top 5: Potentials

- MATCH-T DSM point cloud classification using image support
 - Use improved radiometric features of digital filmless cameras
 - Test area Graz

Methodology

UnClassified PointCloud

Classified Point Cloud

Red=Unclassified, Blue=Off_terrain not_Veg, Green=Off_terrain Veg, Grey= Terrain not_Veg, Yellow= Terrain Veg

(Djaba, 2009)

Prof. Dr. Eberhard Gülch

34

Acknowledgements

inpho GmbH, Germany

- MATCH-T DSM 5.2 (Beta)
- Building Generator
- Add-on SCOP Poly
- Image data

MIBRAG mbh, Germany

- Image data,
- Reference data

HFT Graduates

– MSc. H. Djaba, Dipl.-Ing. (FH) S. Grau, MSc. N. Zheltukhina

Prof. Dr. Eberhard Gülch

35

PHOWO 2009

Conclusions

MATCH-T DSM provides high quality DTMs/DSMs

- Good results in a very challenging area
- Exploitation of multi-image matching and filmless digital cameras
- Change detection results very promising
- First research results show a clear improvement of point cloud classification by image support

Building Generator

 High potential for automated building extraction for LoD1 and LoD2 with given ground plan

Prof. Dr. Eberhard Gülch