

The Promise of MEMS to The Mobile Mapping Community

Dr. Naser El-Sheimy Professor and Canada Research Chair Scientific Director – Tecterra President of ISPRS COM I

> 52nd Photogrammetric Week Stuttgart – September 2009

Agenda

Department of Geomatics Engineering

Schulich School of Engineering University of Calgary

- Mobile Mapping Systems (MMS)
- Progress of Georeferencing
- The Direct Georeferencing Model
- The Potential of MEMS Sensors
- Sensors and Integration Problems
- Achievable Accuracies for Land MMS
- Potential for Airborne MMS
- Summary

Mobile Mapping Systems (MMS)

Department of Geomatics Engineering

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

GEOMATICS

- The idea of MMS, i.e. mapping from moving vehicles, has been around for at least as long as photogrammetry has been practiced.
- About 15 years ago, advances in satellite positioning and inertial technology made it possible to think about mobile mapping in a different way. Instead of using ground control as reference for orienting the images in space, trajectory and attitude of the imaging platform could now be determined directly.
- Hand in hand with this development went the change from analog to digital imaging/mapping techniques – a change that has considerably accelerated over the past few years.

4

Principle of Direct Georeferencing

Department of Geomatics Engineering

Schulich School of Engineering University of Calgary

www.geomatics.ucalgary.ca

Department of Geomatics Engineering

Department of Geomatics Engineering

GPS/INS Integration

Position Yourself Ahead of the Crowd

- Combining INS & GPS signals
 - Kalman filter typically used (optimal if certain assumptions are met)
 - Many integration strategies (loose, tight, deep)
- Filtering and prediction for the loose EKF (15 or 21 state):

Land Based MMS

- Example VISAT[™]
 - Navigation-grade INS
 - Dual-frequency GPS
 - Van
 - Computer, 8 cameras, etc.

Inertial Technology

Department of Geomatics Engineering

chulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

Roadmap of Inertial Technology

Department of Geomatics Engineering

ulich School of Engineering University of Calgary

Performance of Gyro Technologies

epartment of Geomatics Engineering

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

 Performance of Gyro Technologies is usually described by the bias and scale factor stability

INS – Price Roadmap

Department of Geomatics Engineering

Schulich School of Engineering University of Calgary

MEMS IMU - An Example

Department of Geomatics Engineering

chulich School of Engineering University of Calgary

UofC IMU - Developed by employing off-the-shelve MEMS sensors with an average sensor cost 60\$

- Advantages
 - Low cost
 - Small size
 - Low power

	ADI Gyro (ADXRS150EB)	ADI Accel. (ADXL105A)
Range	± 150 deg/s	± 5 g
Cross-axis Sensitivity	±1 deg	±1 deg
Bias error	± 24 deg/s	± 2500 mg
Bias instability (100 sec) *	0.01 deg/s	0.2 mg
Scale factor error	± 10%	± 10%
Price**	USD 10	USD 2.5

Disadvantages

- Large bias and SF error
- Thermal drift

Department of Geomatics Engineering

GEOMATICS

MEMS IMU – Lab Calibration

15

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

- Bias
- Scale factor
- Cross-axis

Error Model for Calibration (Gyros)

$\begin{bmatrix} U_x \end{bmatrix}$		k_{xx}	k_{xy}	k_{xz}	$\left[\omega_{x}\right]$		$\begin{bmatrix} U_{0x} \end{bmatrix}$
U_y	=	k_{yx}	k_{yy}	k_{yz}	$\cdot \omega_{y} $	+	U_{0y}
$\lfloor U_z \rfloor$		k_{zx}	k_{zy}	k_{zz}	$\lfloor \omega_z \rfloor$		U_{0z}

Effects of calibration

	Before	After
Bias	< 25 deg/s < 2500 mg	< 0.5 deg/s < 6 mg
Scale Factor	< 10 %	< 0.1 %
Cross-axis	< 1.0 deg	< 0.2 deg

Problems with MEMS Sensors

Department of Geomatics Engineering

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

- Most of the inadequacies are related to the sensors performance:
 - MEMS-based inertial sensors suffer from relatively poor signal to noise ratio (i.e. high noise level).
 - MEMS-based inertial sensors experience <u>high</u> <u>thermal drift characteristics</u> that may jeopardize the overall accuracy of the navigation systems.
 - MEMS-based inertial sensors have a significant <u>run-to-run bias instability</u> terms.
 - The net effect is that the accuracy of a stand alone MEMS-based INS may deteriorate very quickly upon the absence of the GPS signal.

www.geomatics.ucalgary.ca

17

Department of Geomatics Engineering

Problems with MEMS Sensors

• Example: A MEMS-based gyro along the vertical direction – theoretical measurement = $\omega_e \cos(\varphi)$

Problems with MEMS Sensors

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

Problems with MEMS Sensors

Department of Geomatics Engineering

chulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

 Example: A MEMS-based Accelerometer along the vertical direction

Problems with MEMS-based INS/GPS Position Yourself Ahead of the Crowd Comparison to a Navigation Grade Accel 9.9 9.88 Bias = 100 μg 9.86 n, ort a linki a ritrillian dia kan bara bila dia kan bila 9.84 f_z (m/\sec^2) 9.82 9.8 9.78 9.76 9.74 9.72 L 0 500 100 200 300 400 600 700 800 900 Time (Sec) 21 www.geomatics.ucalgary.ca

Effect of Inertial Sensor Errors on Navigation Parameters

Department of Geomatics Engineering

Department of Geomatics Engineering

An uncompensated accelerometer bias error will introduce.

An error proportional to t in the velocity

An error proportional to t² in the position.

Possible Improvement of MEMS Sensor Performance

Department of Geomatics Engineering

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

Wavelet De-noising – Z Gyroscope Measurements

Department of Geomatics Engineering

chulich School of Engineering University of Calgary

Problems with MEMS Sensors

Department of Geomatics Engineering

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

28

GEOMATICS

Achievable Accuracy

Department of Geomatics Engineering

Position Yourself Ahead of the Crowd

Inertial Systems □ Honeywell CIMU (Reference System) Litton L200 IMU ADI - S16365 IMU

GPS □ NovAtel OEM4 UbBlox (HSGPS)

Nav Aid Odometer

www.geomatics.ucalgary.ca

Test Environment

29

Department of Geomatics Engineering

GEOMATICS

Test Environment

Department of Geomatics Engineering

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

www.geomatics.ucalgary.ca

Test Environment

31

Department of Geomatics Engineering

GEOMATICS

chulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

Very Long GPS outages (400 sec)

www.geomatics.ucalgary.ca

SCHULIC

Forward Filtering

Department of Geomatics Engineering

Position Yourself Ahead of the Crowd

Positional drift reaches 150m after 400 sec

MEMS Backward Smoothing Solution

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

Major improvement with average positional error in the 2-5 m level

www.geomatics.ucalgary.ca

35

Department of Geomatics Engineering

LN200 with Backward Soothing

hulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

Similar performance to the MEMS backward smoothing solution

MEMS BS with Velocity Constraints Studich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

Major improvement with average positional error in the 2 m level

www.geomatics.ucalgary.ca

Department of Geomatics Engineering

Performance of Low Cost Land MMS

	Forward filtering	Backward Smoothing	Smoothing with non-holonomic constraints + Odometer
Position accuracy (RMS) with stable GPS update	1 m	0.5 m	0.1 m
Maximum position drift during GPS gaps	150 m	2.0 m	1.5 m
Attitude error in general (RMS)	1.5 deg	0.6 deg	0.35 deg
Maximum attitude drift with absence of kinematics	6.5 deg	1.6 deg	1.6 deg

Low Cost Airborne MMS

Department of Geomatics Engineering

chulich School of Engineering University of Calgary

Department of Geomatics Engineering

Inertial Systems Setup

Position Yourself Ahead of the Crowd

Kodak DCS 14N (4536 x 3024 pixels)

LN200 UofC MEMS IMU GEOMATICS

www.geomatics.ucalgary.ca

Performance of Low Cost Airborne MMS

Position Yourself Ahead of the Crowd

Including all 16	Error Statistics (deg)			
Flight lines	Mean	Min	Max	RMS
Roll	0.0	-0.75	1.21	0.28
Pitch	0.0	-1.15	1.07	0.44
Heading	0.2	-2.5	3.8	1.8

□ The LN200/DGPS solution has been used as a reference □ The alignment of the MEMS IMU is based on static levelling (for roll and pitch) and 5-7 minutes on-the-fly alignment for heading estimation

□ The average misalignment between the MEMS IMU and the LN200 (0.2, 0.3, and 1.2 deg) was removed when computing the mean values

Promising results for Integrated Sensor Orientation

Department of Geomatics Engineering

Summary

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

- 1. MEMS inertial navigation has shown promising performance today.
- It will keep improving with the fast upgrading of the MEMS sensors in the market. The cost of the systems is also expected to drop down quickly with the blooming sensor manufacture.
- Testing of MEMS-based IMU/GPS system with auxiliary velocity update can reach the requirements for land vehicle navigation and land based MMS systems.
- Promising potential of using low-end MEMS inertial sensors for airborne MMS (e.g. Right of Way (ROW) of highways and Oil&Gas pipelines)

With the technology push and the market pull, MEMS inertial systems is going to reach the performance of Tactical Grade IMU Soon.

www.geomatics.ucalgary.ca

43

MMS – Georeferencing Processing Chain

Department of Geomatics Engineering

GEOMATICS

chulich School of Engineering University of Calgary

Nonlinear Modeling – Unscented KF Concept

Schulich School of Engineering University of Calgary

- The EKF approximates non-linear functions.
- The UKF approximates the Gaussian distribution using sigma points.
- Sigma points undergo the non-linear transformations (system/measurement).
- The mean and covariance are computed from the transformed sigma points.

