Advanced point cloud processing

George Vosselman ITC Enschede, the Netherlands

INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

Laser scanning platforms

Airborne systems

- mounted in airplane or helicopter
- GPS/IMU positioning
- 250 kHz
- multiple echoes / full waveform
- < 5 cm accuracy (geo-referenced)
- 10-20 pts/m²

(FLI-MAP 400 - Fugro Aerial Mapping)

Laser scanning platforms

Terrestrial systems

- mounted on tripod
- 500 kHz (pulse)
- 1.2 MHz (phase)
- < 1 cm accuracy (relative)
- > 1 pt/mm² at 10 m

(Riegl VZ-400)

Laser scanning platforms

Mobile systems

- mounted on vehicle
- GPS/IMU positioning
- 200 kHz
- < 5 cm accuracy (geo-referenced)
- < 1 cm accuracy (relative)
- > 1 pt/cm² at 10 m

(Optech Lynx - TopScan)

Point cloud examples

Airborne

Processing of point clouds

- Segmentation and classification
- Airborne laser scanning
 - 3D building models
 - Curbstones
- Mobile laser scanning
 - Road markings
 - Poles of traffic signs and lights
 - Building façade extraction
- Terrestrial laser scanning
 - Building façade modelling
 - Building façade texturing

Segmentation of point clouds

Goal

 Grouping points that potentially belong to the same object surface

Objects

- Man-made objects parametric shapes
- Terrain surface smooth

Segmentation of point clouds

Method

- Select local sets of co-planar points (RANSAC, 3D Hough transform)
- Surface growing: expand seed surface with adjacent points that are close to surface

Classification of point clouds

- Point based vs. segment based classification
- Useful attributes to discriminate between buildings and vegetation
 - Height above the ground
 - Segment size
 - Percentage of last return pulses
- Further improvement by using spectral data and more advanced reasoning

3D building modelling

Graph matching for building reconstruction

- Point cloud segmentation
- Selection of roof segments
- Analysis of intersection lines and height jump edges
- Roof topology
 graph

Target shapes

3D building modelling

- After matching
 - join intersection lines
 - determine outer bounds of roof faces
 - extend intersection lines

3D building modelling

7

- Results for suburban areas with 729 buildings
- 81% correct
- Problems
 - Segment not detected (7%)
 - Intersection line not detected (4%)
 - Target shape not in database (2%)

Mapping curbstones

Height differences of just a few cm are visible

Mapping curbstones

- Extraction of locations with small height differences
- Reconstruction of road side topology
- Closing gaps and smoothing road side polygons

Mapping curbstones

- 20 points/m²
- Completeness 86%
- Correctness 84%
- Accuracy
 0.1-0.2 m
- Problems
 - Occlusions
 - Absent height jumps

Mapping road inventory

Applications

- Road maintenance management
- Road safety analysis
- Car navigation

Examples

- Road markings
- Poles of traffic signs and lights

Extraction of road markings

- Reflectance strength of returned signal depends on
 - Distance
 - Incidence angle
 - Material properties

Extraction of road markings

- Normalisation of reflectance strength
- Connected components in point cloud
- Pattern recognition and model fitting
- Combination with imagery

Extraction of poles

- Typical point distribution of poles
 - Dense along pole axis
 - No points around the pole

Extraction of building façades

- Segmentation into planes
- Selection based on
 - Size
 - Slope

Extraction of building façades

- Мар
 - 45 buildings
 - 1240 m potentially visible walls
- Extracted
 - 840 m vertical segments
 - 470 m map walls
 - 370 m fences and garden walls

A

Modelling of building façades

- Segmentation into planes
- Modelling knowledge on building elements
 - Wall
 - Roof
 - Door
 - Protrusion
 - Ground
- Properties
 - Size
 - Spatial relationships

Slope

Modelling of building façades

- Windows recognised as holes in wall
- Interactive handling of protrusions
 - Selection of segments
 - Improvement of generated outline
- Projection of side walls on main wall or roof surface

Texturing of building façades

- Texturing is time consuming
- Misfit between image and model due to
 - Incorrect orientation parameters
 - Model errors
 - Occluding objects (trees, cars)

Texturing of building façades

 Incorrect texture projection

Texturing of building façades

- Matching straight image lines with model edges
- Result
 - Updated orientation parameters or
 - Modified building model

Conclusions

- Point clouds of today's scanners allow reliable extraction of object surfaces
- Like in image understanding, knowledge modelling is the key to information extraction
- Point clouds become a valuable data source for mapping projects
- Tools are to be developed further and integrated into photogrammetric workstations

