

2 R

Enhanced Absolute and Radiometric Calibration for Digital Aerial Cameras

Robert E. Ryan <u>rryan@i2rcorp.com</u> Mary Pagnutti <u>mpagnutti@i2rcorp.com</u> Photogrammetric Week September 8, 2009

Background

- Z/I is upgrading their radiometric calibration process for DMC and RMK-D digital cameras to include absolute radiometry
 - Enabling the development of a new suite of remote sensing products that historically have been dominated by satellite based systems
 - Builds upon relative radiometric calibration processes (Flat Fielding or Normalization, linearity, band-to-band)

- Pixel-to-pixel to correct
 - Vignetting (fall off in signal off axis) image normalization or flat fielding correction
 - Detector variation
- Typical remote sensing industry goal <1% (Landsat Data Continuity Mission (LDCM) Data Specification, March 2000)

Current Relative Radiometric Test Configuration

Camera and sphere are vertically aligned during laboratory calibration

Current Integrating Sphere Lamp Configurations

- Four Tungsten lamp configurations
 - Blue (2 x 50W and 2 x 20W)
 - Green (2 x 20W and 2 x 10W)
 - Red (4 x 10W)
 - NIR (4 x 5W)
 - Pan (4 x 5W)
- Lamps interchanged to adjust radiance level
- Approximate factor of 7 difference between blue and NIR lamp radiance level

I ² RSample Integrating Sphere Raw Image and Corresponding Histogram

Signal changes by more than a factor of 2

I ² R Why Have An Absolute Radiometry Aerial Imaging System?

- Predicts the performance of the multispectral imager a priori
- Simulates satellite remote sensing systems
- Supports the ability to atmospherically correct products to surface reflectance

T	2	
I	R	

Absolute Radiometry

- Conversion of DN to engineering units of radiance (remote sensing)
- Typical remote sensing goal is <5% difference from a National Standard (Landsat Data Continuity Mission (LDCM) Data Specification, March 2000)

In general if a system has good absolute radiometry it has good color quality

I z Integrating Sphere Spectral Radiance

 Designed to approximately emulate At-Sensor radiance for a 50% gray target with solar zenith angle of 60 degrees

13

Absolute Radiometric Calibration

$$C = \frac{1}{DN} \frac{\int_0^\infty L(\lambda)S(\lambda)d\lambda}{\int_0^\infty S(\lambda)d\lambda}$$

Where:

- DN Digital Number for a pixel
- L Spectral radiance of Integrating sphere [W/(m² sr μ m)]
- S System spectral response
- C Calibration coefficient [(W/(m² sr μ m))/DN]

Using the spectral response and Integrating sphere radiance both normalization and absolute calibration will be accomplished simultaneously

I_{R}^{2}

DMC MS Camera Optical Schematic

[2] E] [3] B] 0b j 4/25	(Digitale Kamera)	2001/0001 1100027/01	F0-EM/ZGG 15.06.00 17:20
	TH = 24.994 BETA = .000000 S1 = WELL = 587.56 NA = .1252 W1 = -42	UNENDL SK = 1.449 1.621 YBG = 22.191	

DMC Spectral Response

Normalized Response

Description

Band	Peak (nm)	50% Points (nm)	10% Points (nm)		
Blue	475	429-514	319-579		
Green	545	514-600	497-635		
Red	620	600-676	584-690		
NIR	725	695-831	681-968		
Pan	540	450-739	392-944		

17

RMK-D Spectral Response

Normalized Response

Description

Band	Peak (nm)	50% Points (nm)	10% Points (nm)
Blue	450	419-488	390-503
Green	525	499-557	482-592
Red	620	600-662	530-704
NIR	733	709-816	695-921

I ² R Benefits of Atmospherically Corrected Image Products

- Reflectance maps enable:
 - Change detection with reduced influence of atmosphere and solar illumination variations
 - Spectral library-based classifiers
 - Improved comparisons between different instruments and acquisitions
 - Derived products such as Normalized Difference Vegetation Index (NDVI)

Importance of Atmospheric Correction

NASA Stennis Space Center January 15, 2002

Includes material © Space Imaging, LLC

$I^{\frac{2}{R}}$

 $\mathbf{I}_{\mathbf{R}}^{|2|}$

Expected Performance

- Initial analysis indicates laboratory radiometric calibration for DMC and RMK-D should be better than 3% and comparable to satellitebased land imagers
- Vicarious calibration processes will be necessary to validate radiometric performance in flight

Summary

- Z/I has instituted an absolute radiometric calibration process that will enable
 - Development of a new generation of remote sensing products for framing cameras
 - Improved operation for the DMC and RMK-D

