

See the world with different eyes

51st Photogrammetric Week

See the world with different eyes

Performance improvements of digital photogrammetric systems

•Review

•Changes in computing performance

Parallel/distributed processing/computing

•Example

Prospects

Review - project size

Number of photos in production per company

- 1997 10000 20000 photos
- 2007 200000 photos
- example for large project in 2006:

Los Angeles County 3 DMC cameras 60500 images + LIDAR final products: 10 cm pixel orthos , 2 foot contours (see: ASPRS 2007, G. Sehnalek, N. Franchino)

Increase in productivity

main contribution:

- new digital sensors (large and medium format)
- direct Georeferencing (GPS and IMU)
- Changes in computing performance (storage and processing)

images on the Internet

www.virtualearth.com

www.google.com

See the world with different eyes

Performance improvements of digital photogrammetric systems

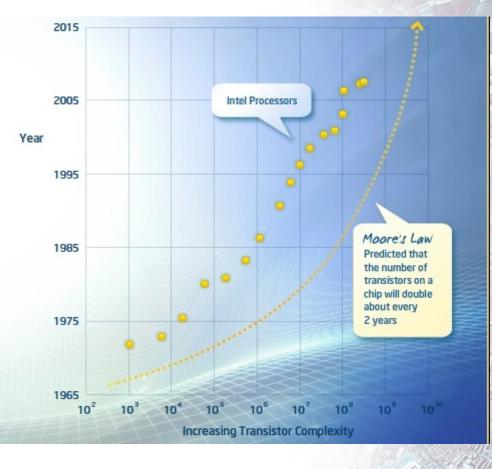
•Review

•Changes in computing performance

Parallel/distributed processing/computing

•Example

Prospects



Moore's Law

Moore's Law

In 1965, Intel co-founder Gordon Moore predicted that the number of transistors on a chip would double about every two years. Since then, Moore's Law has fueled a technology revolution as Intel has exponentially increased the number of transistors integrated into its processors allowing greater performance and energy efficiency.

Ref: www.intel.com

>) Jump to Timeline

Intel

1981 - 6 Mhz 134 000 Transistors

1989 - 25 Mhz 1,2 Mio.

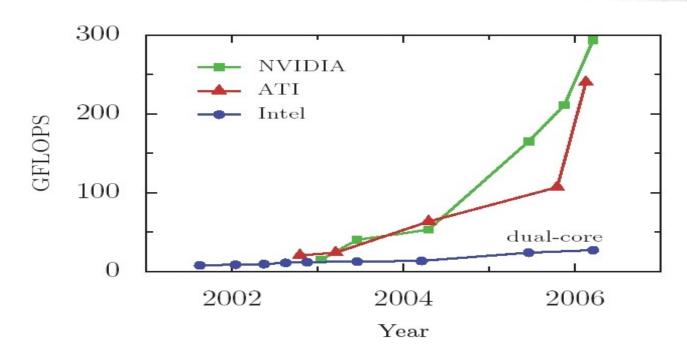
2000 - 1,5 Ghz 42 Mio.

2007 - 2,6 Ghz 582 Mio.

Intel 286 Intel 486 Intel Pentium IV

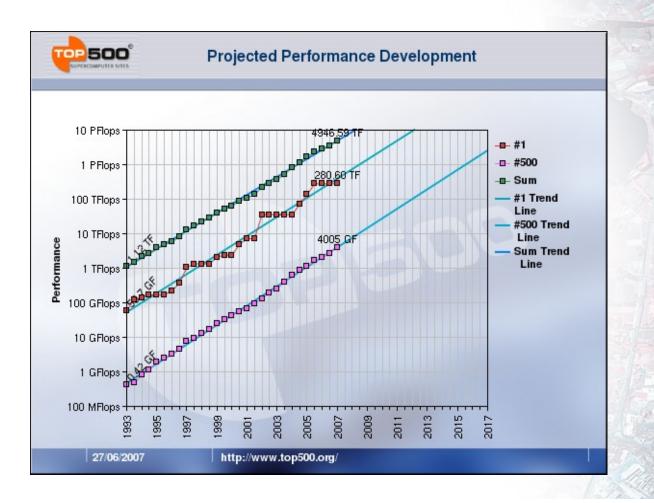
Intel Core 2 Quad Processor

End of 2007 Intel 8 core systems


Need: Support of multi core architecture

GP-GPU

• General – Purpose computation on Graphics Processing Units



Ref:Owens, Luebke, Govindariju, Harris, Krüger, Lefohn, Purcell, A Survey of General Purpose Computation on Graphics Hardware Computer Graphics Forum, Volume 26 (2007), number 1 pp. 80 - 113

Тор 500

See the world with different eyes

Performance improvements of digital photogrammetric systems

•Review

•Changes in computing performance

Parallel/distributed processing/computing

- •Example
- Prospects

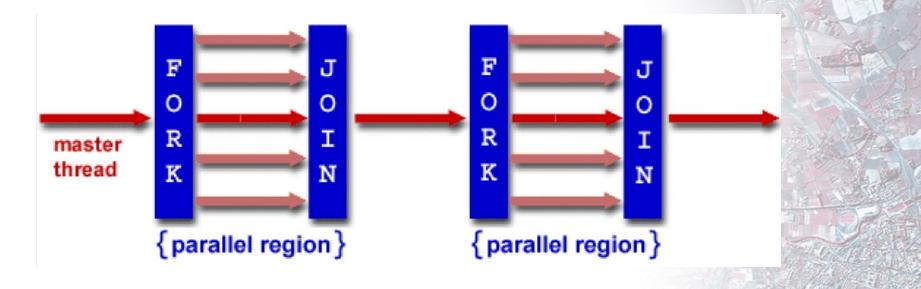
better performance

how to get there at customer's production:

... it runs twice as fast every 18 months with no change of code...

Enhance software to take advantage of new hardware

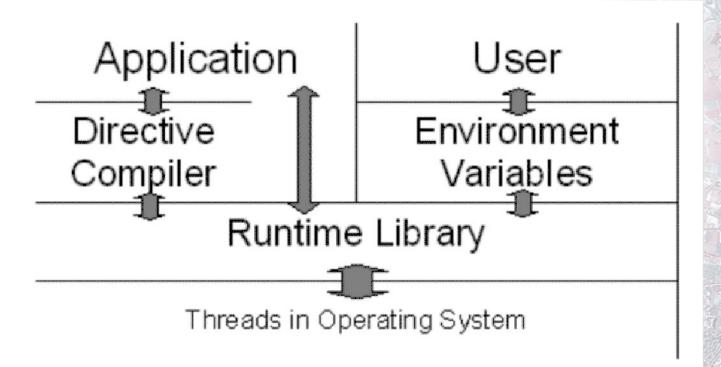
- Better utilization of available customer's hardware
- Use complete potential of multi-core architecture



Parallel execution in software

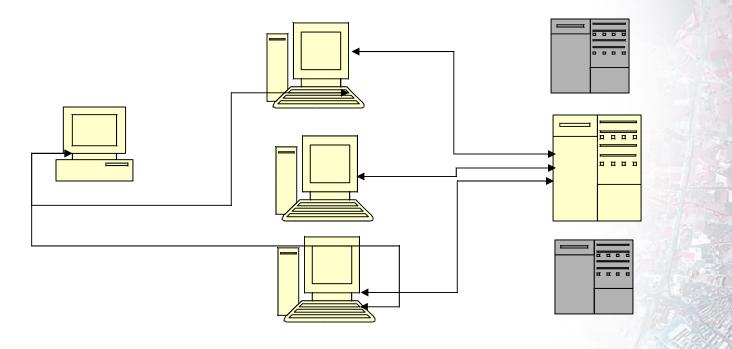
usage of multi core hardware:

- OpenMP for shared memory (SMP) systems:
- fork / join model


http://www.openmp.org

Open_MP Architecture

- Multi-Platform shared-memory parallel programming
- Specification 2.5 May 2005
- Supported by all major compiler



better workload on customer's IT

better utilization ratio of available hardware:

→ distribute/share tasks to/with different computer

Work load management systems

Open source:

Portable Batch System (or simply PBS)

- OpenPBS the unsupported original opensource version
- TORQUE Resource Manager (Terascale Open-Source Resource and QUEue Manager) an open source fork of OpenPBS version 2.3.12 maintained by Cluster Resources.
- Sun Grid Engine (SGE), previously known as CODINE (COmputing in Distributed Networked Environments) or GRD (Global Resource Director), an open source batch-queuing system, supported by Sun Microsystems.
- Condor is a software framework for coarse-grained distributed parallelization of computationally intensive tasks

Commercial systems

commercial :

- Load Sharing Facility (or simply LSF) is a commercial computer software job scheduler sold by Platform Computing
- Sun also sells a commercial product based on SGE, known as N1 Grid Engine (N1GE).
- PBS Professional (PBS Pro) an enterprise-quality professional version maintained and sold commercially by Altair Engineering
- others

Ideal workload on 8 core system

Options Vie	w негр		THE STATE
plications Proces	sses Services	Performance Networking Users	
CPU Usage	CPU Usage H	istory	
100 %			
Memory	Physical Men	ory Usage History	
1.59 GB			
Physical Memory	(MB)	System	
Total	4069	Handles 23712	and the second second
Cached	2743	Threads 1053	
Free	8	Processes 61	
14 IN A	(D)	Up Time 5:55:26	and the second
Kernel Memory (N		Page File 2224M / 8292M	
Total	236		
Paged	168	Resource Monitor	
Nonpaged	68	Tresource Monitor	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

See the world with different eyes

Performance improvements of digital photogrammetric systems

•Review

•Changes in computing performance

Parallel/distributed processing/computing

•Example

Prospects

Example 1a: OrthoMaster - DPMaster

Distributed Processing Master ID Owner Priority Remote Host Status Time Command <u>N</u>ew... C:\InphoTest\PhoWo.prj <u>E</u>dit... 😑 - 380 ckriea 5 vm1@des-eowin.eu.trimblecorp.net Running 29/08/2007 - 03:37 pm (running for 00:03:20) C:\WINDOWS\syste... · 0 - 1 ckrieg 5 vm2@des-eowin.eu.trimblecorp.net Running 29/08/2007 - 03:37 pm (running for 00:03:16) C:\WINDOWS\syste... <u>V</u>iew... ckrieg 5 undefined Idle 29/08/2007 - 03:37 pm C:\WINDOWS\syste... 2 Idle 3 ckrieg 5 undefined 29/08/2007 - 03:37 pm C:\WINDOWS\syste... Remove undefined Idle C:\WINDOWS\syste... ckrieg 5 29/08/2007 - 03:37 pm 4 5 ckrieg 5 undefined Idle 29/08/2007 - 03:37 pm C:\WINDOWS\syste... Held - via condor hold (by user ckrieg) C:\WINDOWS\syste. ckrieg undefined 29/08/2007 - 03:41 pm Close Filter job list by Remote Host

Example 1b: New job

New Job								?×
ettings and requierements								
Select job settings and de	fine requirements fo	or the distribut	ed processing.					
Collinea								
Settings								
Priority: 5								
Machine requiremen	ts							
Operating system:	Windows XP - (def	ault)		(~			
Architecture:	Intel x86 CPU - (default)				~			
Minimum memory:	0				[MB]			
Host	t	Platform	CPU	CPUs	Disk Space [MB]	Activity	Software installe	:d?
	eu.trimblecorp.net		Intel x86 CPU		023	Idle	\checkmark	
vm2@des-eowin.e	eu.trimblecorp.net	Windows XP	Intel x86 CPU	1 1	023	Idle	\checkmark	
<								>
					< <u>B</u> ack		<u>lext ></u> a	ancel

?

Example 1c: view job

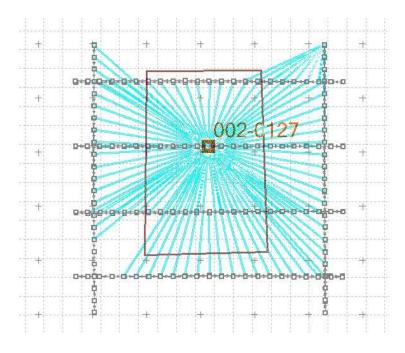
33 View Job - [380.6]

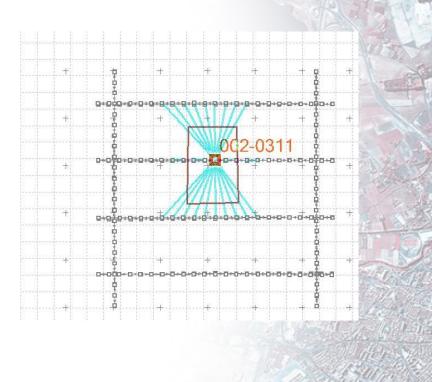
Submitte ID OWI 380.006: 0 are reject 0 reject yo 2 match be 0 match be 0 match be 0 are avai No succes Last failed	job's analyze informatio analyze informatio log file error file output file Run anarysis summary. K ited by your job's require our job because of their o it are serving users with a it reject the job for unkno it will not currently preem able to run your job sful match recorded. match: Wed Aug 29 15:4 r last match failure: no match	TIME ST PRI SIZE (TIME ST PRI SIZE (TIME ST PRI SIZE (ments wn requirements a better priority in the po own reasons pt their existing job	ecorp.net	
				Ilose

Example 2a: ADS On the fly L1

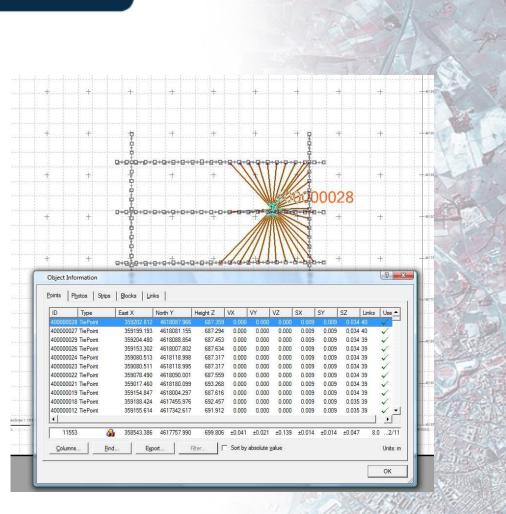
Example 2b: ADS On the fly L1

Example 3: Automatic Triangulation


- Simulated data, large block size
- 10000 images 50 strips, 200 images each
- 225 image observations, per image
- 10000 GPS + IMU
- 2.5 Mill. image points
- 1,5 Mill. unknowns
- ca. 0,5 Mio. block points
- Adjustment MATCH-AT: 17 minutes / iteration
- → need for parallel processing of matching



Example 4a: block with extreme overlap

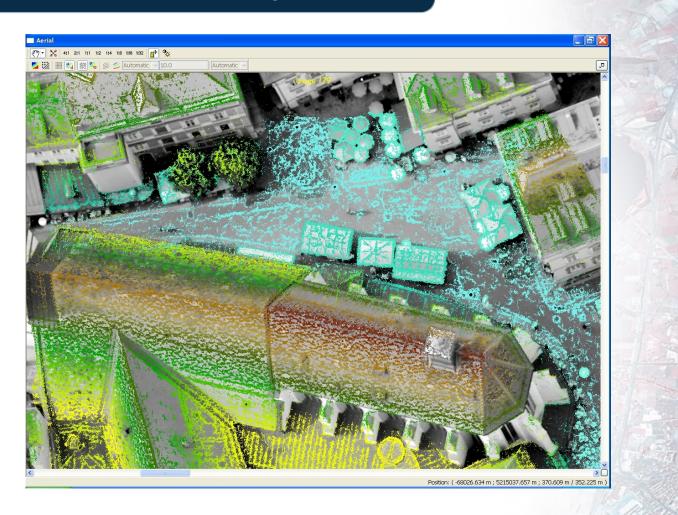


Example 4b: block with extreme overlap

• points in up to 40 images:

Example 5a : MATCH-T DSM

- Creation of DSM point cloud with UltraCam images
- 80/60 overlap
- 10 cm GSD


Example 5b : DSM point cloud

Example 5c : DSM colored point cloud

See the world with different eyes

Performance improvements of digital photogrammetric systems

•Review

•Changes in computing performance

Parallel/distributed processing/computing

•Example

•Prospects

- Distributed processing
 - Already in use at customer's productions shops
 - INPHO introduces DPMaster for OrthoMaster and MATCH-T
- Need for adapted algorithms to run on parallel (multi-core hardware)
 - Different technologies for implementation, Open_MP platform independent
 - Multi core architecture will evolve in next years
- additional source processing power: GPU (graphic process. unit)
 - GPU development faster then CPUs in last 3 years
 - Different programming model only special task can run on GPU

For further information, please visit INPHO's demo in room E and F

© inpho 2007 www.inpho.de

September 2007