

Institut für Photogrammetrie

The EuroSDR Performance Test for Digital Aerial Camera Systems

EuroSDR network on Digital Camera Calibration and Validation

The EuroSDR Calibration network

Universität Stuttgart

ifp

Michael Cramer

michael.cramer@ifp.uni-stuttgart.de

51st Photogrammetric Week September 3 – 7, 2007 Universität Stuttgart

EuroSDR Network on Digital Camera Calibration and Validation

#	Group	Institutions / Systems	#
1	Camera manufacturers	ADS, DIMAC, DMC, DSS, Ultracam, Starimager, 3-DAS-1, DigiCAM	12
2	AT software developers	BLUH, ORIMA, inpho, dgap, CSIRO	5
3	Other companies	Vito, ISTAR, Geosys, OMC, stereocarto	5
4	Science	ETH, OSU, Glasgow, Stuttgart (2x), IdeG, Rostock, DLR (2x), Berlin, Nottingham, Aas, Pavia, Leon	29
5	NMCAs	ICC, USGS, OrdSurv, IGN, FGI, Lantmäteriet, Swisstopo, BEV, ICV, itacyl	13
		Σ representatives	64

Universität Stuttgart

EuroSDR Performance Test for Digital Aerial Camera Systems

Network Digital Camera Calibration

The empirical test flight data

The empirical test flight data

Universität Stuttgart

Experimental Phase 2 data

#	Altitude [m]	GSD [m]	# strips long/cross	% overlap long/cross	# Images	Additional data
ADS	ADS Vaihingen/Enz, June 26, 2004					
low	1500	0.18	4/2	100 / 44	36	GPS/INS
high	2500	0.26	3/3	100 / 70	36	GPS/INS
DMC	DMC Fredrikstad, October 10, 2003 Phase 2b					
low	950	0.10	5	60 / 30	115	n.a.
high	1800	0.18	3	60 / 30	34	n.a.
UltracamD Fredrikstad, September 16, 2004						
low	1900	0.17	4 / 1	80 / 60	131	GPS
high	3800	0.34	2	80 / 60	28	GPS

Phase 2 / 2b Evaluated data sets

Phase 2 Data Set	# Results	Participants
ADS	3	UoP, DLR-B, ETH
DMC	6	ICC, IPI, inpho, HfT, LM, Ingr.ZI
UltracamD	5	UoN, IPI, itacyl, inpho, CSIRO

77 different versions (Phase 2) evaluated

Phase 2b Data Set	# Results	Participants
DMC	5	ICC, IPI, CSIRO, ETH, Ingr.ZI
UltracamD	4	IPI, CSIRO, ETH, Vexcel

80 different versions (Phase 2b) evaluated

General remarks on data processing (1/2)

- typically the two different flight heights processed independently, only few participants used both heights for common adjustment
- standard and proprietary software packages used

Process step	Software
Matching and point measurement (only for Phase 2)	Manual, MATCH-AT, LPS, ISAT, GPro, PhotoMod, others
Bundle adjustment	Match-AT, ORIMA, InBlock, BLUH, Bingo, PhotoMod, ACX-Geotex, IS-PhotoT, others

General remarks on data processing (2/2)

- Self-calibration was applied in general,
- but additionally almost each participant also provided solution w/o use of additional SC
- some participants used modified SC approaches taking the specific image geometry of large format DMC / UCD imagery into account

Data set	Self-calibration parameter set (if applied)
DMC	Ebner, Grün, Polynom, BLUH parameters Ebner / Grün per quadrant, BLUH DMC specific
UCD	Brown, Grün, BLUH parameters Ebner / Grün per image patch, BLUH UCD specific
ADS	Brown (with some extensions)

The test flight results

Universität Stuttgart

Phase 2 – ADS ifp solution

Flight	GSD [m]	Self	Self		RMS	
	non-stag.	calibration	X [m]	Y [m]	Z [m]	
ADS Iow	0.18	not applied	0.052	0.054	0.077	
ADS low	0.18	applied	0.031	0.040	0.057	

- RMS values from 190 check point differences
- Results obtained from standard Leica processing software
 - ORIMA bundle adjustment, 12 GCPs used
 - self calibration (if applied) based on Brown parameters

Institut für Photogrammetrie

EuroSDR Performance Test for Digital Aerial Camera Systems

Network Digital Camera Calibration

The DMC & UCD results (Phase 2b only)

Phase 2b – DMC & UCD ifp solutions

Flight	H [m]	GSD [m]	RMS		
Flight			X [m]	Y [m]	Z [m]
DMC	1800	0.18	0.048	0.047	0.116
UCD	1900	0.17	0.076	0.060	0.059

- RMS values from check point differences
- in all cases 44 significant Gruen parameters introduced, from all available ground points (GCPs and ChPs)
- Input std.dev. used for weighting:
 - image points 3um
 - GCPs 2cm

Phase 2b – DMC high GSD 0.18m, h_a 1800m

No SC

Phase 2b – DMC high GSD 0.18m, h_a 1800m

DMC params

EuroSDR

EuroSDR Performance Test for Digital Aerial Camera Systems

Institut für Photogrammetrie

Network Digital Camera Calibration

Conclusions and outlook

Conclusions

 self calibration seems to be necessary to improve object space accuracy for all three tested camera systems

 Self-calibration is of larger influence for DMC and UCD compared to ADS

- systematic corrections for UCD are more significant compared to DMC
- absolute accuracy (after self-calibration)

Camera	horizontal	vertical	
	1/5 niv	1/3 pix	
AD3	1/5 pix	0.04 ‰ h _a	
	1/3 – 1/4 pix	1/2 – 1 pix	
DIMC		0.05 – 0.1 ‰ h _g	
Lilitra com D	1/2 $1/4$ pix	1/3 pix	
Ulliacamp	1/2 – 1/4 pix	0.03 ‰ h _g	

Note: Different flight configurations (i.e. overlaps, GPS/inertial EO availability), different image data quality, values only from 3 data sets

- a priori weightings are also of influence (phase 2b), in some cases choice of weighting factors exceeds effect of additional parameter set
- in some cases special parameter sets adopted to sensor geometry seem to be necessary; standard parameters like Ebner or Gruen in some cases are not able to fully compensate the systematic errors
- a priori recommendation of optimal additional parameter set is difficult or even not possible
- System suppliers are re-thinking/modifying their present ways of camera calibration
 - Leica Geosystems Presentation P. Fricker (today)
 - Intergraph / ZI-Imaging Presentation C. Dörstel (today)
 - Microsoft Photogrammetry Presentation M. Gruber (today)

- Project now finalized, final report pending, expected in fall this year
- Two new EuroSDR projects currently in their design phase, follow-ups of Camera Calibration Network
 - Performance of Medium Format Digital Airborne Cameras
 Project leader: Dr. G. Grenzdörffer, Universität Rostock
 - Radiometric Aspects of Digital Airborne Imagery Project leader: tbd

www.ifp.uni-stuttgart.de/eurosdr

Invitation to actively participate !

ifp

Conclusions and outlook

Universität Stuttgart

Outlook The EuroDAC² initiative

EuroSDR Activities in European Digital Airborne Camera Certification

EuroDAC² - a concept for future certification of digital airborne cameras in Europe

The EuroDAC² initiative Why European camera certification ?

EuroSDR in general agrees and underlines the high relevance and impact of the USGS quality assurance plan **but**

different requirements in flight project parameters and accuracy

- projects are of smaller extension, more regional sized, more stringent requirements in resolution and accuracy
- different accuracy classes are required for European users
- Type certification vs. individual sensor (serial number) certification
- new technology of digital airborne imaging mainly originated in Europe, i.e.
 - ADS40 (CH), DMC (D), UC-D/X (A), DiMAC (L), JAS-150 (D), HRSC (D), AIC-Rolleimetric (D), DigiCAM (D), IGN-Camera (F)
 - accepted use of those systems throughout Europe should be based on their European wide certification
- Europe has already defined its own solutions for other projects of larger impact (i.e. Galileo GNSS). Not only as competition but also to support / complement each other. Same might be possible for different certification approaches.

Universität Stuttgart

Conclusions and outlook

Universität Stuttgart

ifp

Conclusions and outlook

ifp

Conclusions and outlook

Universität Stuttgart

The EuroDAC² initiative Process steps

#	Process steps
1	Evaluation of users needs / expectations <i>Action</i> : (mainly) NMCAs and others
2	Input from camera manufacturers Action: (mainly) system suppliers and others
3	Definition of EuroDAC ² process Action: (mainly) EuroDAC² core competence group
4	Acceptance of EuroDAC ² process Action: (mainly) NMCAs, system suppliers and others
5	Implementation (in Europe) of EuroDAC ² process

⇒ Invitation to actively participate !

Acknowledgments

- system suppliers, mainly Leica Geosystems, Intergraph / ZI-Imaging, Microsoft Photogrammetry
- data providers, namely **TerraTec & IFMS-Pasewalk**

all supporting network members, namely

U. Tempelmann, P. Fricker, U. Beisl, G. Ferrano, C. Dörstel, M. Madani, M. Gruber, P. Louis, J. Losseau, M. Mostafa, K. Tsuno, H. J. Wherli, J. Kremer, M. Müller, P. Nonin, B. Ameri, J. Everaerts, T. Clarke, L. Hinsken, T. Heuchel, M. Schroeder, P. Reinartz, R. Müller, M. Lehner, F. Scholten, K. Gwinner, D. Stallmann, X. Wu, T. de Sevilla Riaza, A. Clarence, T. Schenk, D. Merchant, A. Grün, M. Baltsavias, S. Kocaman, H. Eisenbeiss, J. Amiri Parian, G. Petrie, G. Grenzdörffer, N. Haala, K. Jacobsen, C. Heipke, R. Reulke, E. Gülch, H. Ziemann, I. Colomina, I. Maalen-Johansen, M. Smith, V. Casella, M. Franzini, B. Arias Pérez, H. Spitzer, P. Duncan, S. Baltrusch, J. Schaffer, D. Klang, D. Akerman, R. Kuittinen, J. Hyyppä, P. Marshall, A. Streilein, S. Bovet, G. L. Stensaas, G. Y. G. Lee, J. Christopherson, J. Talaya, R. Alamus, M. Deseilligny, M. Franzen, R. A. Nafría, W. Stößel J. Théatre, S. Roovers, B. Klauser, M. Gültlinger

www.ifp.uni-stuttgart.de/eurosdr