

51st Photogrammetric Week, Stuttgart

Raising the Bar for Multi-Band, High-Resolution Airborne Imagery

Peter Fricker, Switzerland

- when it has to be **right**

Raising the Bar for Multi-Band High-Resolution Airborne Imagery

Contents

- Achievments after 10 years of development
- Design of the ADS40 2nd Generation
- Geometric and radiometric image quality
- Calibration / Certification
- Summary and Outlook

Achievments of 10 years development

ADS40 2nd Generation

4

Panchromatic, RGB and NIR data collection

Raising the Bar for Multi-Band High-Resolution Airborne Imagery

Contents

- Achievments after 10 years of development
- Design of the ADS40 2nd Generation
- Geometric and radiometric image quality
- Calibration / Certification
- Summary and Outlook

The ADS40 2nd Generation, a result of technical progress

Optics:

Microstructured filters allowed a new beam splitter design, the "Tetrachroid"

 Mechanics: A new alloy allowed a quasi-monolithic structuring of all stability-relevant components

Electronics:

Higher integration density of electronics led to shorter signal paths, resulting in a 4 times higher sensitivity

Subsystems:

High performance IMUs provided a better initial orientation

- when it has to be right

Optics:

7

New Tetrachroid beamsplitter - Schematics

- Optical RGB and NIR pixel co-registration device
- Microstructured cascaded dichroic beamsplitters
- Energy conservation due to spectral light splitting
- Metal interference filters
- Located between optics and CCDs

Optics: New Tetrachroid beamsplitter – Cross-Section

- Colours have to be separated by filters close to the CCD line pairs
- Filter strips have to be 16 µm wide and perfectly straight
- Filter glass has to be mounted in close distance (40 μm) to the CCD surface

Optics:

10

New Tetrachroid beamsplitter - Benefits

- Perfectly co-registered R,G,B,N images
- All bands acquired at the same native resolution
- RGB and RGN composites with same resolution as the 3-line Pan images
- No Pan-sharpening required
- 5th band (Pan) from combined RGB bands
- Direct geo-referencing of all image data due to rigid connection of IMU, Focal plate, Tetrachroid and Optics

5-Band Imagery

Mechanics: A new alloy for increased stability

- Focal plate made from an AI-Si alloy with high thermal conductivity and expansion of steel
- Central carrier (steel) holds lens system (steel) and focal plate
- Legs of IMU table allow central symmetric relative expansion of carrier and IMU table

- when it has to be **right**

Raising the Bar for Multi-Band High-Resolution Airborne Imagery

Contents

- Achievments after 10 years of development
- Design of the ADS40 2nd Generation
- Geometric and radiometric image quality
- Calibration / Certification
- Summary and Outlook

Low image noise opens a wide field of applications

4 times increased sensitivity compared to 1st Generation sensors can yield faster ground speed or improved image quality

Longer flights during day and season

Data collecting on overcast days

Weather: overcast -> Equivalent sun-angle: 8° GSD 5 cm Ground Speed GS: 140 knots Date/Time: 1 Nov. 2006 / 3:20 p.m. Latitude: 47° North

- when it has to be right

15

Undisturbed imaging geometry allows a simple physical sensor model for in-situ self-calibration

Sun-Angle: 13°

Cross-flight pattern at two altitudes allows:

In-situ flight calibration to compensate for many systematic error sources in the light path

- Aerosol
- Air turbulence
- Optical window
- Cover glass
- Optics
- Filters

Geometric and Radiometric Image Quality

Geometric Calibration

- Undistrubed image geometry due to mechanical stability of the IMU table, a single focal plate and a single temperature and pressure compenstated lens system
- Lab calibrations are insufficient to eliminate all systematic errors
- The In-situ Self-Calibration method offers
 - independence from manufacturers geometric lab calibration
 - allows in-situ calibration flights anywhere in the world
- In-situ Self-Calibration method gives flexibility to national certification entities

Quality of external orientation

Romanshorn test area – 5, 10, 20 cm GSD (July 2007)

		Ground Control [cm]	Check Points [cm]
	RMS-X	1.2	1.2
GSD 5 cm	RMS-Y	1.1	2.1
	RMS-Z	2.7	3.8
	RMS-X	1.7	3.4
GSD 10 cm	RMS-Y	1.3	3.4
	RMS-Z	1.6	8.7
	RMS-X	2.1	7.1
GSD 20 cm	RMS-Y	2.8	8.5
	RMS-Z	3.9	11.7

17

Raising the Bar for Multi-Band High-Resolution Airborne Imagery

Contents

19

- Achievments after 10 years of development
- Design of the ADS40 2nd Generation
- Geometric and radiometric image quality
- Calibration / Certification
- Summary and Outlook

ADS40 Radiometric Processing Chain Reflectance Radiance Calibration: System calibration: Atmospheric BRDF Ground Corrected At-sensor Correction: Correction: Reflectance DN DN: Radiances . Remo∨al of Removal of Removal of the [1] Removal of - Path radiance [W/m²/sr/µm] reflectance effects of solar system - Adjacency by laboratory anisotropy irradiance artifacts effect calibration (with or without ground measurements)

Absolute spectroradiometric calibration of the ADS40 sensor

Is best realized in a lab environment because light intensities can be made traceable to national standards

NIST Traceable Laboratory Light Source with spectroradiometer

- when it has to be **right**

Calibrated Integrating Sphere

Blue LEDs

Calibrated Satellite sphere with Tungsten lamp

Summary on the absolute radiometric calibration

- Absolute radiometric calibration of digital cameras offers additional information and image normalization possibilities.
- After radiometric calibration is applied in GPro, 16 bit ADS40 image data differ only by a small factor from the corresponding spectral radiance value.
- Quantitative measurements for geology, agriculture, etc. are made possible.
- Laboratory calibration sites in Switzerland, USA and soon in Asia ensure a proper "global" calibration of all ADS40 sensors.

	Geosystems
<section-header><section-header><image/><image/><section-header><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header>	Fulfilling the USGS Plan for Quality Assurance of Digital Aerial Imagery the ADS40 System obtained the USGS Certification for all of the three Sensor Heads: SH40 SH51 SH52

Raising the Bar for Multi-Band High-Resolution Airborne Imagery

Contents

25

- Achievments after 10 years of development
- Design of the ADS40 2nd Generation
- Geometric and radiometric image quality
- Calibration / Certification
- Summary and Outlook

- when it has to be **right**

Summary of practical benefits of the progress made from 1st to 2nd Generaton ADS40

- 4 times more sensitivity
- Reduced volume of Sensor Heads SH51 / SH52
- Exchangeable IMU's
- Fringe-free Stereo images in equal native PAN, RGB and CIR
- Geometric in-situ Self-Calibration
- Absolute spectroradiometric calibration
- Independence from GNSS reference Stations (PPP technology)
- Upgrade path from SH40 to SH51 / SH52

Leica Geosystems' proven integrated workflow

- FPES Flight Planning & Evaluation Software
- FCMS Flight & Sensor Control Management System

Leica GPro – ADS40 Ground Processing

Post processing time (PHOWO 2003)

_						User
		Flight	2.400 km ² . 20cm GSD	Total	time	action
Capture			30 lines, each 40 km, 3 Pan and 4 MS	Works	tations	time
			Approximately 8h flight at 130 knots	single	eight	
		Download	230 GB ADS data format			
Poforonco		Download	200 CD ADO data format			
Reference			= 940 GB Image data	5 h	5 h	0.5 h
		-				
	t -	Geo-	Trajectory calculation	2 h	2 h	1.5 h
		referencing	geo-referencing of L0 images	3 h	3 h	0.5 h
		Rectification	FW, Nadir and BW panchromatic	36 h	5 h	0.5 h
			image strips from each flight line			
	╪╡┱╀╪┼		Automatic Point Measurement			
		Aerial	Rundle Adjustment	36 h	5 h	05h
		triangulation	Bunaic Aujustinent	12 h	12 h	15h
	L	inangalation				1.5 11
		Ortho photo	RGB or FCIR 2 400 km ² (927 sq mi)	60 h	9 h	5 h
Measure					311	
		Feature	Due to image strips slightly faster	454 6	44 6	10 h
Analyze	ee ee	Feature extraction	Due to image strips slightly faster	154 h	41 h	10 h
Analyze		Feature extraction	Due to image strips slightly faster than in traditional workflow	154 h	41 h	10 h
Analyze		Feature extraction	Due to image strips slightly faster than in traditional workflow	154 h	41 h	10 h
Analyze		Feature extraction Fly-through	Due to image strips slightly faster than in traditional workflow Similar to traditional workflow	154 h	41 h	10 h
Analyze Present		Feature extraction Fly-through	Due to image strips slightly faster than in traditional workflow Similar to traditional workflow	154 h	41 h	10 h
Analyze Present		Feature extraction Fly-through	Due to image strips slightly faster than in traditional workflow Similar to traditional workflow	154 h	41 h	10 h

Post processing time (PHOWO 2007)

Capture		Flight	2,400 km ² , 20cm GSD 30 lines, each 40 km, 3 Pan and 4 MS Approximately 8 h flight at 130 knots	Total time Workstations single eight		User action time
		Download	230 GB ADS data format = 940 GB image data	4 h	4 h	0.5 h
Reference		Geo- referencing	Trajectory calculation geo-referencing of L0 images	2 h 2 h	2 h 2 h	1.5 h 0.5 h
	L	Aerial triangulation	Automatic Point Measurement Bundle Adjustment	8 h 12 h	3 h 12 h	0.5 h 5 h
Maasuusa		Ortho photo	RGB or FCIR 2,400 km ² (927 sq.mi)	44 h	6 h	1.5 h
Measure				72 h	29 h	9.5 h
Analyze	CO C	Feature extraction	Due to image strips slightly faster than in traditional workflow			
Present 30	7	Fly-through	Similar to traditional workflow	t has to be <mark>ri</mark>	ght J	eica

ADS40 2nd Generation Best Imagery

- PAN, RGB and RGN Stereo
- Equal Resolution
- No color fringes

Romanshorn Bodensee H = 1000m GSD: 10cm

31

- when it has to be **right**

ADS40 2nd Generation 5cm GSD image

Achieved requirements for a truly multi-band, high-resolution camera – the bar has been raised

- High area coverage performance (FoV, Swath)
- High accuracy (spatial and radiometric)
- Equal resolution in all bands
- No Bayer array solution
- No Pan-Sharpening
- No model deformation due to image patching
- No model deformation caused by temperature & pressure changes in the optical system
- Full Stereo capability (PAN, RGB, CIR)

- when it has to be **right**

ADS40 2nd Generation Airborne Digital Sensor Best Imagery ... Anytime ... Anywhere

Thank you for your attention

- when it has to be **right**

33