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Conclusions

 Large displays offer new opportunities for 
 science, development, education, entertainment

 to deal with the increasing amount of visual information

 by visualization, interaction, and collaboration

 Large displays need
 wide screens AND high resolution

 enormous graphics power (GPU clusters)

 new rendering and visualization algorithms

 GPU-based visualization techniques
 allow for interactive exploration of huge data sets

 are a fun research area  

The Stuttgart PowerWall Project
 Visualization Research Center of the Univ. of Stuttgart (VISUS)
 Moved into remodeled „exotic“ building in 2010
 Funding for new “immersive visualization lab”

 Decision for high-res back projection stereo wall
 Visualization should benefit more

from highres than from immersion
 Large Screen (display full car model): 6.0 m x 2.2 m
 Stereo for larger groups, no bevels
 Higher resolution than usual 

 (typical PowerWall pixel >2 mm)
 Goal: monitor resolution - pixel size 0.5 mm (50 dpi)

 requires close to 2 x 50 Megapixels (50 HD projectors)



Projection System
 Use as few projectors as possible and minimize seams
 4K projectors (9 Megapixels via 4 video-in) in 5 vertical stripes
 10x 4K projectors require 40 video-in and at least 20 Gbyte/s 
 Gross 100 Megapixels must be generated
 2-tier GPU cluster architecture

 Only display nodes are connected to projectors
 Render nodes perform off-screen rendering
 600 CPU cores
 150 GPUs

10× JVC 
DLA-
SH4K

10× Display 
Nodes
2 CPUs, 2 GPUs,
Framelock

64× Render
Nodes
2 CPUs, 2 GPUs
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Viewing the Entire 33-Page Funding Proposal



 Scientific Visualization
 Science and engineering, medical imaging, …
 Spatial data, fields, particles, underlying physics

 Information Visualization
 Databases, networks, business, web, …
 Non-spatial, high-dim, multi-variate

 Visual Analytics
 Data analysis,

interaction,
visualization

Visualization – Diversity after 25 Years
National Science Foundation ViSC Report 1987:

Visualization is a method of computing. It 
transforms the symbolic into the geometric, 
enabling researchers to observe their simulations 
and computations. Visualization offers a method for 
seeing the unseen. 

 Spatial data exhibits an outstanding value 
in visualization: “Everything is related to 
everything, but near things are more 
related than distant things.” [Tobler, 1970]
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GeoVis – An Obvious Combination  

 If any feature can be visualized spatially, 
visualization will implement a map view 
for finding patterns, trends, and outliers in the data

 Three examples for visualization approaches for spatial data
 Terrain visualization
 Geo-referenced social media
 E-bikes trajectories 



Terrain Visualization
 Is this still interesting with Google Earth being available?
 Yes, for large and high-resolution data
 Yes, for advanced visual analysis tasks
 Yes, for advanced rendering/shading techniques
 Yes, for exploiting advanced GPU functionality

 LiDAR-based digital terrain model (DTM) of
Baden-Württemberg provided by Landesamt
für Geoinformation und Landentwicklung 
 covers about 360 00 km2
 horizontal resolution:  1 m
 vertical resolution:  15 cm
 raw dataset:  

about 37 000 tiles
à  1001 m x 1001 m  => 1 TB

TerrainView
 Project collaboration with Prof. Hartmut Seyfried on identification and 

interpretation of young (Würmian) glacial geomorphology
 Commercial tools can handle only a subset of the data at once
 Goal: interactive visualization of entire dataset on desktop PC
 TerrainView functionality – all in “real-time”

 Terrain visualization
orthographic/perspective

 coloring, relief shading 
(variable light directions), 
gradient representation,
sea level, contours 

 calculate valley profiles
along polylines for geo-
morphological investigs.

 new cone model to
estimate glacial loads

Thomas Müller, et al.



TerrainView Techniques 
 Preprocessing step: 

resample into quadtree 
structure: 1024 x 1024 m^2

 Heavy use of GPU features
 New shaders change the

way how we do graphics
 Instead of sending geometry

to the graphics card, let the
GPU generate the triangles
 Send one quad to GPU
 Replicate into 112x80 quads

by instancing
 Tessellation control shader

-> triangle mesh
 Tessellation eval. shader

-> adjust height

TerrainView - applications
 Post-glacial recessional terraces in the Argen valley



TerrainView - applications

GeoData for Situation Awareness
 We live in a world where cybersocial and cyberphysical systems produce 

billions of geo-related data records on a daily basis:

 Accessing, extracting, and combining this information would 
significantly help to inform situation awareness, intelligence, and 
decision-making -> a typical Visual Analytics task

 Technical challenges in utilizing the information are commonly referred 
to as the four V’s of Big Data:

• Twitter Posts
• Instagram Photos
• Facebook Posts

• Flight Records
• Hotel Check-Ins
• Passenger Info

• Traffic Data
• Crime Records
• Census

• Weather data
• Public Webcams
• etc …
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Twitter for Situation Awareness

 Simulation of Virginia 
Earthquake 2011
 Yellow = P-Wave
 Red = S-Wave
 Blue = Tweets

 Event demonstrates the 
high timeliness and 
distribution of social 
media reactions
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Twitter for Situation Awareness

17:51:46 17:53:39

17:55:14 17:57:16

 Information extracted from 
the data could be of great 
value for decision makers in
 Disaster Management
 Public Safety
 Disease Control

 Research question
How to identify relevant 
information and produce 
meaningful situation 
overviews from millions of 
data items in real-time?

Twitter ~ 13 Million 
messages/day

Dennis Thom, et al.



Spatiotemporal Anomalies
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 Assumption 1: Event is the most central entity in situation awareness
 Assumption 2: Events generate spatiotemporal clusters of similar tweets

Spatiotemporal Anomalies
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 Traditionally, analysts would enter keyword queries 
to find this kind of clusters

 Idea: Revert the process by detecting such clusters in the data and use 
them to generate a visual overview of what should be searched for



 Streaming-enabled cluster 
analysis based on K-Means 

 Instead of a fixed number of 
centroids (means), a splitting 
mechanism is employed

 A sliding window is used to
evaluate/discard clusters 
once they turn stale
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Anomaly Discovery

Blue : Twitter messages
Red  : Centroids 
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Anomaly Discovery

 Clustering performed 
seperately for any observed 
topic to account for 
„clusters within clusters“

 Each new message is 
assigned to topics and only 
the corresponding cluster 
branches are updated



 Detected clusters are placed 
as labels on the map –
collision resolution produces 
tagcloud layout

 Similar overlapping labels 
are aggregated to 
counteract overfitting and 
allow adaptive semantic 
zoom
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Anomaly Visualization

earthquakeearthquakeearthquakeearthquake

22

ScatterBlogs Visual Analytics



 In services like Twitter and Foursquare, users also provide information 
about relevant Points of Interest (POI) in an environment.

 Traditional geographic data can be interactively enriched with such 
knowledge from Web 2.0 data sources.

 For example: To better understand urban dynamics, but also to enable 
consumer acceptance analysis, there is an increasing interest to look 
into movement reasons.
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Data Enrichment

 Data: Large electric mobility 
dataset
 500 electric scooters, 

155.000 trips, 8 mio 
measurements

 Task: Usage analysis
 Can e-mobility find its way 

into everday‘s life?
 When, where, what for ... 

... do costumers use their 
scooters?
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Data and Task
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Find Reasons of Movement

Visual Analysis of Movement Behavior using Web Data for 
Context Enrichment [Krueger et al. 2014]

 Use data from 
Foursquare to 
annotate areas of 
interest with reasons 
of movement

 Plotting POIs near clusters -> information overload and visual clutter
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Interactive Map
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Garden Peking Wok Bamboo Steak
house

Large Company
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Certainty Aggregation

 Certainty Criteria: 

 Distance

 Checkins

 Users

 Combination

0                                certainty score                         1

Color legend:
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Certainty Aggregation



 Single Instance Filtering

 Explore visited POIs and routes 
from a single user
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Use Case

 Area Filtering

 Explore POIs and routes from 
users living in a certain area

30

Temporal Analysis

drill down aggregate



 Evaluation of cyclic behavior (week: Monday to Sunday)

31

Temporal Analysis

weekend

 Use Case: Area related usage
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Analysis Examples



 Cybersocial and cyberphysical systems will continue generate enormous 
amounts of data, many of which will have a spatial relation

 Visualization plays an important role in the exploitation of this data
 Terrain visualization continues to provide research challenges like 

correlations of geologic and geomomorphic phenomena.
 Spatial properties of data can be used to enable new visualization 

forms of abstract data, such as events in social media.
 Context knowledge in Web 2.0 sources can be employed to enrich 

traditional geographic data.
 Visualization research can help to enable space-time indexed data 

exploration, the discovery of unknown correlations, and deep insights 
about the semantic realm entangled with our geospatial environment. 
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Conclusion


