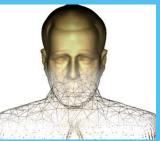
## Modelling 3D Avatar for Virtual Try on



NADIA MAGNENAT-THALMANN DIRECTOR MIRALAB – UNIVERSITY OF GENEVA DIRECTOR INSTITUTE FOR MEDIA INNOVATION, NTU, SINGAPORE WWW.MIRALAB.CH/


#### **Creating Digital Humans**



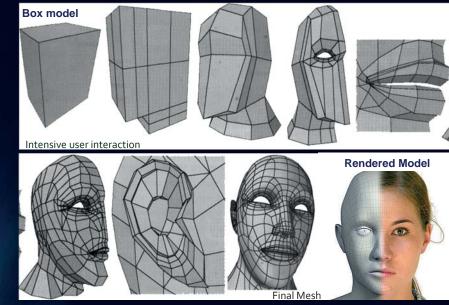
Gypsum Statue of Humphrey Bogart



eshgrid plotted on the statue with a penc



Vertex by vertex, each coordinate is transferred into the computer intuitively

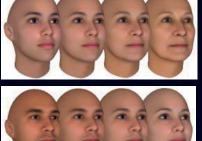



Model is rendered



Some other models that are used for modeling(1987)

#### **Creating Digital Humans**

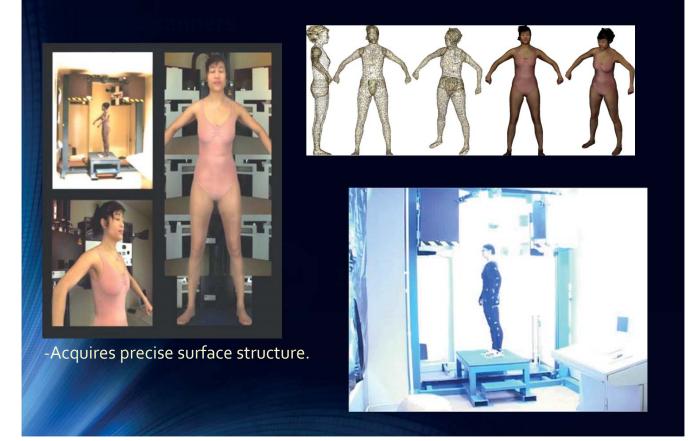



- Free-form interactive modeling with a geometric primitive.

Peter Ratner, 3-D Human Mo

#### **Creating Digital Humans**






-Uses Template -Models -Postures -Motions

-Gestures -Textures

Digital human modeling software

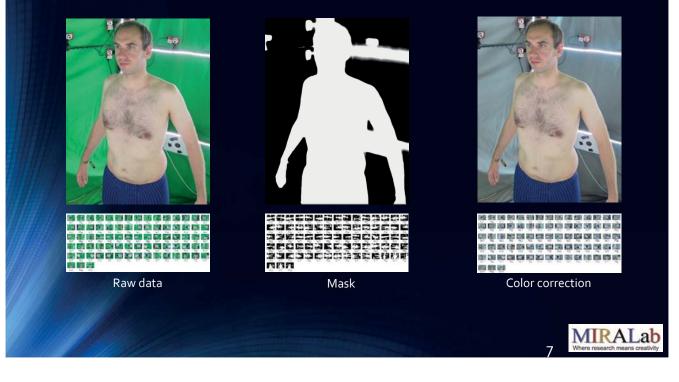
#### **Creating Digital Humans**

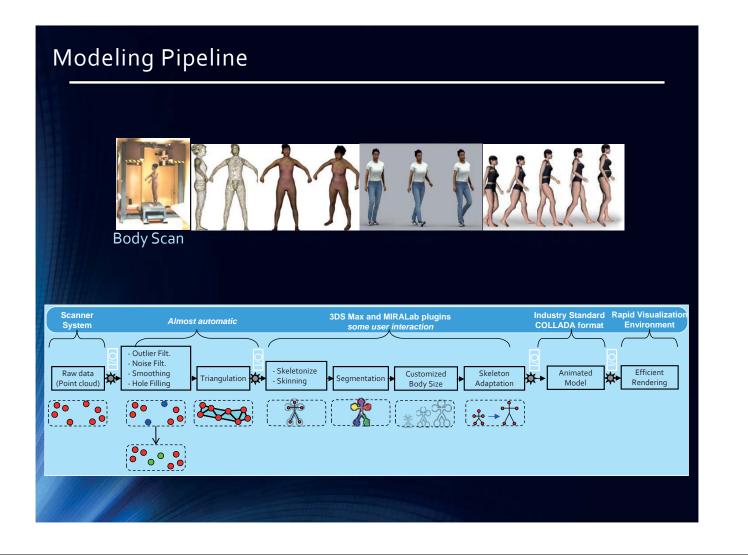


#### **Creating Digital Humans**

- 3D body scanner
  - Image based 3D scanner
  - 80 compact cameras synchronized and control from a single computer placed on hexagonal structure
- Output:
  - 80 pictures taken simultaneously from various angles
  - 3D reconstructed avatar




3D scanner setup




#### **Creating Digital Humans**

#### Post processing using agisoft photoscan

- Generate automatically mask to facilitate reconstruction
- Remove green artefact on the skin to improve texture quality





# Characters Animation

MIRALAB - UNIVERSITY OF GENEVA

## Early Cloth Simulation Models at MIRALab

- B. Lafleur, N. Magnenat-Thalmann, D. Thalmann, Cloth Animation with Self-Collision Detection. Proc. IFIP Conf. on Graphics Modeling, Tokyo, Japan, Springer, pp. 179-197, 1991
- M. Carignan, Y. Yang, N. Magnenat-Thalmann, D. Thalmann, Dressing Animated Synthetic actors with Complex Clothes. Computer Graphics (Proc. SIGGRAPH '92), ACM Press, Vol. 26, No. 2, pp. 99-104, 1992





## Problems to be solved in Clothing Research

#### Mechanical Properties of Cloth

• How to describe the mechanical behavior of cloth.

#### **Mechanical Modeling**

• How to simulate these properties on virtual cloth.

#### Numerical Integration

• How to solve the differential equations resulting from the mechanical model.

#### **Collision Detection**

• How to detect efficiently contacts between cloth and other objects.

#### **Collision Response**

How to take into account these contacts in the simulation.

#### 1. Mechanical Properties

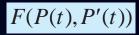
- Internal Forces (From surface deformations)
  - Elasticity (metric, curvature)
  - Viscosity
  - Plasticity
- External Forces (From environment interactions)
  - Gravity, Air Viscosity
  - Contact reaction, Friction
  - Miscellaneous Interactions





MIRALab

#### 2. Mechanical Modeling


#### Representation of Mechanical Parameters on a Virtual Cloth Surface

- Geometrical modeling: Surface discretization
  - Triangles, Quadrangles,...
  - Polygons, Bezier patches, ...
  - Regular grid, Arbitrary topology,...
- Animation: Time discretization
  - Successive frames along time.



#### 3. Numerical Integration

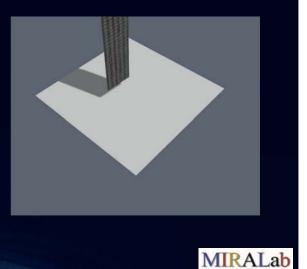
 The mechanical model defines a law relating force to position and speed.



Newton's law relates acceleration to force and mass:



- A differential system should be resolved along time
  - Huge number of degrees of freedom:
    - Efficient methods are needed.






#### 4-5 Collision Detection and Response

#### Integrating Collision Effects in the Mechanical Model

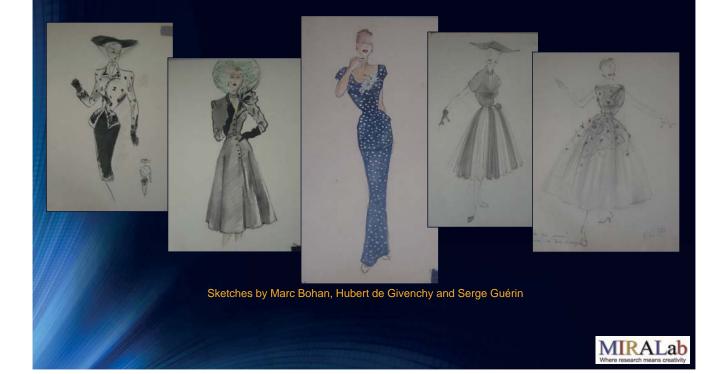
- Reaction Effects
  - Prevent interpenetration of surfaces.
  - Necessary for geometrical consistency.
- Friction Effects
  - Dissipative forces that oppose sliding.
  - Contribute to realistic contact effects.



## Exhibition Robert Piguet

- Exhibition Robert Piguet : "High Fashion in Equations"
  - Project in collaboration with The Swiss Fashion Museum of Yverdon-les-Bains, Switzerland

#### Context of the collaboration


• The Swiss Fashion Museum of Yverdon-les-Bains had the privilege of receiving 3,000 original sketches made by several trainees of renowned Designer Robert Piguet. The exhibit, titled Exposition Robert Piguet: From1933 to 1951, traces Mr. Piguet's career.





#### **Exhibition Robert Piguet**

• New ideas are illustrated with aesthetic drawings.



#### **Exhibition Robert Piguet**

 Having the desired 3D shape in mind, the 2D patterns are designed by experts according to pattern construction rules:





## Exhibition Robert Piguet



#### **Exhibition Robert Piguet**





Model designed by Guèrin



#### **Exhibition Robert Piguet**



#### Exhibition Robert Piguet also film selected at SIGGRAPH ELECTRONIC THEATER (2007, San Diego, USA)



#### What is a Virtual Try On?

- An (online) application, allowing you to try on virtual objects (before purchase).
- There are many (online) examples
  - Jewelry
  - Watches
  - Glasses
  - Garments



## A Virtual Try On for garments

#### • A Virtual Try On for garments has been approached from many different angles

- Evaluate garments for style
  - The commercial majority falls into this category
- Evaluate garments for fit
  - Academic research and some commercial solutions
- A spectrum of approaches

Photos of actual garments or Drawings
Overlaid on a model's body
like paper dolls

2D

•2D elements viewable from many angles •Gives the illusion of 3D •Input can come from either 2D or 3D

2.5D

•Full 3D real-time rendering •Both models and garments are meshes

•Possibly includes animation and simulation



#### VTO Approaches: 2.5D





Mimic Me



Optitex 3D Virtual Clothing

## Our Virtual Try On: Overview

- 3D Application
- Real-time simulation of garments
- Try-On using Virtual Human
- Real-time 3D avatar creation based on user morphology
- Garments customisation
- Virtual mirror using Microsoft Kinect
- Multi-device and multi-user system

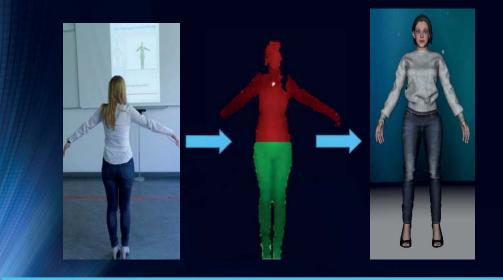




MIRALab

## Our Virtual Try On: Body sizing

- An accurate body is essential
  - To "try on" clothing, you need a virtual body that represents your own


#### • Start from a template body

- Generate a body with your sizes based on anthropometric data
- Use a picture of the user to increase immersion and realism



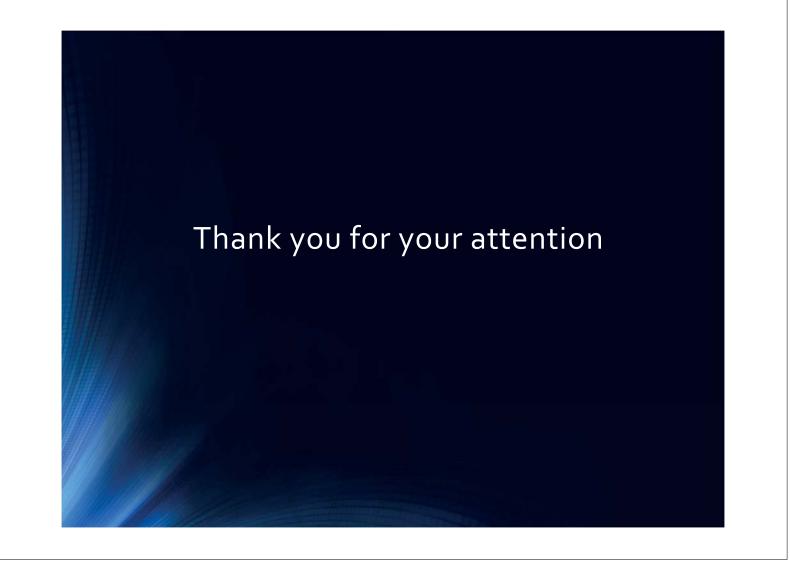
#### Interface and Interaction

- Kinect client
  - Morphology extraction using depth image





## Interface and Interaction


- Kinect client
  - Real-time reconstruction of the animation





## Our Virtual Try On: Demo



