

Evolution 2: Manual to automatic image meas. & orientation

Manual monocomparator Computer-assisted monocomparator

Analytical plotter

Targetless automatic image meas. & network orientation

Fully automatic network orientation using targets

Automatic comparator with image EO

THE UNIVERSITY OF

MELBOURNE

Major CRP Developments in the Digital Era

- Coded targets/markers facilitated autoorientation & 3D point determination, in both off-line & on-line/real-time CRP systems
- FBM/SfM auto-orientation facilitated autoorientation & sparse 3D point cloud generation
- Dense image matching facilitated dense 3D point cloud generation to pixel-level resolution
- Automatic camera calibration facilitated by coded targets or FBM orientation; has enhanced accessibility to CRP

crc•si)

THE UNIVERSITY OF MELBOURNE

Photogrammetric measurement for accident reconstruction & forensics

crc•si)

THE UNIVERSITY OF

Near-planar geometry not conducive to targetless orientation

Multi-level site was recorded in 3 networks spanning 300m, in 70 minutes

THE UNIVERSITY OF MELBOURNE

Example Project: Scene mapping of tanker explosion

Example Project: Scene mapping of tanker explosion

Automated CRP Measurement using Targets

Aircraft Manufacture

AIRBUS Hamburg Fuselage Sections And Seat Rail Measurements (A380, A340, A330, A321, A320, A319, A318)

crc•si)

THE UNIVERSITY OF MELBOURNE

Measurement Example: Passenger Door Frame & Door Hinges at AIRBUS Hamburg

A 15 minute task for a 3D meas. accuracy of 0.015mm; no operator intervention beyond loading the images

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Automated stairway measurement for stairlift design & manufacture
crcesi	
	MELBOURNE
Targetless, Au	Itomated Image Orientation
Targetless, Au	tomated Image Orientation

Automated Object Reconstruction via Dense Matching

Approx. 55 million (visible) 3D points from dense image matching

crc•si)

THE UNIVERSITY OF MELBOURNE

Targetless Network Orientation via FBM: Amphora

57 images, 90,000 pts ('sparse' p.c.), RMS vxy – 0.35 pixel

the university of MELBOURNE

Targetless object reconstruction via dense matching: Amphora

Dense point cloud from SGM (via SURE) comprising 116 million points

Triangulated mesh

THE UNIVERSITY OF

Examples taken from Photoscan Showcase (http://www.agisoft.com/community/showcase)

What did photogrammetrists get out SfM developments?

- A powerful new approach to solving the image-point correspondence problem, albeit to a precision that could be 10 times poorer than when using targets (eg 0.3 pl versus 0.03 pl)
- Some new approaches to determination of initial values for non-linear photogrammetric orientation models (eg bundle adjustment), but these are not universally applicable
- Adoption of RANSAC-type approaches, eg for filtering of matches and initial value determination; ie the notion of using solution plausibility involving many point combinations rather than relying on high-quality control/constraints comprising a few points.
- And ... the headaches of processing & interacting with dense point clouds (though not really a CV inspired issue!)

THE UNIVERSITY OF MELBOURNE

<image>

Project Example: UAV WitnessPRO mapping, British Columbia

the university of MELBOURNE

UAV WitnessPRO mapping, RCMP British Columbia

THE UNIVERSITY OF MELBOURNE

Prospects for post-orientation, 3D feature point extraction via monoplotting

• 3D Feature points from single images

THE UNIVERSITY OF MELBOURNE

FBM-based auto orientation can work OK ... but beware! Case 1: Bridge Deformation Survey

8 images, >400 pts, RMS vxy=0.31pl, Accuracy 1:1,600 Summary of results suggests reasonable network orientation

Target-based auto orientation: Bridge Deformation Survey

8 images, 52 pts, RMS vxy=3.2pl, Accuracy 1:800, all pts >5 rays

Solution via targets with >5-ray intersections suggests something is wrong!

crc•si)

THE UNIVERSITY OF MELBOURNE

FBM-based auto orientation: Network orientation problem

One image has excessive outliers & another has a limited number of points

Dimensional inspection of an aircraft tool; required to measure tooling points and 'black holes'.

Automatic Camera Calibration – with & without targets

Results of self-calibrations of the Nikon D200 camera for targeted and untargeted cases.

27 images, 25,000 feature points, 200 target points (25 codes)

	Focal length, c (σ _c) mm	x _p (σ _{xp}) mm	У _р (σ _{xp}) mm	∆r @ r=8mm µm	∆r @ r=10mm µm	∆r @ r=12.0mm µm	P(r) @ r=10mm μm	P(r) @ r=12mm μm	RMS v _{xy} No of points	
Coded targets	17.632 (0.0010)	-0.038 (0.0007)	-0.193 (0.0007)	121.8	217.2	332.2	5.7	8.1	0.09 pl 200	
Untargeted	17.627 (0.0008)	-0.036 (0.0005)	-0.193 (0.0005)	120.9	216.2	333.1	5.3	7.6	0.25pl 55,500	
Crc•si)										

Prospects for in-field self-calibration

- Massive data redundancy afforded by FBM targetless orientation can mean that less stringent constraints need be applied to imaging geometry
- Example of 49-image, 41,000-point UAV network
- 18,000 points seen in >3 images; 6,000 pts seen in 6 or more images
- Feasible because Δh in object space approx. 60% of flying height H

THE UNIVERSITY OF MELBOURNE

Prospects for 'natural' object point fields for self-calibration

- PhaseOne camera with 50mm lens
- 40-images, 3300 points (all with 6 or more rays), RMS vxy = 0.20 pixel
- Convergence could be relaxed because ∆h in object space >50% of H
- Standard errors of 2 μm for c & <1 μm for xp,yp

In-field self-calibration – multiple cameras

- 5 Sony Alpha 850s with 50mm lenses on a fixed-wing UAV
- Nadir & two oblique angles → 127⁰ fov
- @ H = 800m, lateral coverage is 3200m

Project courtesy of Prof. J.Y.Rau, NKCU

In-field self-calibration – multiple cameras

- Block of 540 UAV images from 5 cameras; 10,900 points
- Self-Cal. Bundle Adjustment: RMS v_{xy} = 0.44pl, σ_{XY} = 0.08m, σ_{Z} = 0.11m
- All points seen in 4 or more images, 9200 in 6 or more & 390 in >20

Final Remark

Choice for 3D object measurement/reconstruction via either sparse or dense surface matching & point cloud generation, or via targeted or manually measured feature points, will depend upon downstream priorities; some forms constitute final information products whereas others require subsequent data-to-information conversion

THANK YOU

THE UNIVERSITY OF MELBOURNE