On trajectory determination for photogrammetry & remote sensing: sensors, models & exploitation

GeoNumerics Av. de Carl Friedrich Gauss 11 E-08860 Castelldefels Spain

I.Colomina

2015-09-08

ge_lø_lnumerics

55. Photogrammetric Week – Stuttgart – 2015-09-08 – 1

AGENDA

- 1. motivation and introduction
- 2. motion sensing & timing
- 3. trajectory error modelling and estimation
- 4. trajectory exploitation
- 5. conclusions

... a quick survey on trajectory determination for P&RS

INTRODUCTION

1. trajectory (function of time)

$$\{n(t_0), \dots, n(t_e)\}, n(t) \in N$$

2. navigation space, examples:

$$N = R^{3} \times R^{3} \times SO(3)$$
$$N = R^{3} \times R^{3} \times SO(3) \times R^{m}$$
$$N = R^{3}$$

2. orientation / navigation (broad sense of orientation functions)

navigation is real-time orientation

MOTION SENSING & TIMING

MOTION SENSING & TIMING

- 1. GNSS infrastructure
- 2. inertial sensing & navigation
- 3. timing

QUESTION: WHAT IS THIS?

SHORT ANSWER:

- precise, accurate and robust code positioning
- single-frequency ionospheric determination

ANSWER: Galileo E5 AltBOC (10,15)

ANSWER: Galileo E5 AltBOC (...) & E1 CBOC (...)

RMSE (m)	К		S-1		S-5		S-10		S-30	
	μH	μV	μH	μV	μН	μV	μН	μV	μН	μV
OS	0.07	0.19	0.07	0.15	0.07	0.14	0.06	0.13	0.05	0.12
тс	0.14	0.35	0.13	0.32	0.11	0.26	0.10	0.18	0.07	0.07

ENCORE PROJECT RESULTS (FP7, GSA)

Colomina,I., Miranda,C., Parés,M.E., Andreotti,M., Hill,C., Silva,P.F., Silva,J.S., Peres,T., Galera Monico, J.F., Camargo,P.O., Fernández,A., Palomo,J., Moreira,J., Streiff,G., Granemann,E.Z., Aguilera, C., 2012. Galileo's surveying potential: E5 pseudorange accuracy. GPS World, Vol. 23, No. 3, march 2012, pp. 18-33.

SINGLE-FREQUENCY IONO-DELAY ESTIMATION WITH Galileo E5 (& BeiDou B2) AltBOC

- 1991-old idea
- group-delay and phase-delay have opposite signs
- of limited practical interest with the original GPS signals
- SX5 project (FP7, GSA): CAC/ANSA 1-2 cm (few min)

Schüler, T., ed. (2012): Precise single-frequency positioning using the Galileo E5 AltBOC signal. Results from project "SX5 – Scientific Service Support Based on Galileo E5 Receivers." Memorandum No. 2, Universität der Bundeswehr München, pp. 217.

GNSS INFRASTRUCTURE BY 2020

- GPS (32), GLONASS (29), BeiDou (30+5) & Galileo (30)
- 30 40 satellites in-view at any time
- 12 signals
- ≈ 1000 channel receivers
- IGS products (GPS)
 - orbits: 2.5 cm (1D, RMS)
 - clocks: 75 ps (RMS) 75 x 10⁻¹² s 2.25 cm

QUESTION: WHAT IS THIS?

volume	2.4 x 2.4 x 1 cm ³
weight	7 g
power consumption	99 mW
in-run / run-to-run bias	3 / 1800 deg/h
in-run	< 0.01 m/s ²
cost	2 k€

SHORT ANSWER

AV plots courtesy of CTTC.

PROPER ANSWER: THE EPSON M-G363/350 IMU

AV plots courtesy of CTTC.

SQUARE ROOT OF ALLAN VARIANCE

NICE 2 km-COIL FOG @ 130 k€ / IMU

AV plots courtesy of CTTC

COMPARATIVE NOISE FIGURES FROM AV

IMU	w (deg/h)	A (m/s²)	k€
imar fji	0.10	0.00001	130
Honeywell CIMU	1.00	0.00025	60
Honeywell HG1700	2.00	0.00025	20
NavChip	6.00	0.00050	2
EPSON M-G350	12.00	0.00060	2
Maxim MAX21100	36.00	0.00320	0.003

MEMS-MEMS / PP / P: 0.02-0.05 m V: 0.01-0.02 m/s A: 0.03-0.10 deg

QUESTION: WHAT IS THIS?

volume	4 x 3.5 x 1.1 cm ³
weight	35 g
power consumption	120 mW
stability (Allan Variance)	8 x 10 ⁻¹² (over 1000 s interval)
MTBF	> 100000 h
cost	2 k€

SHORT ANSWER:

- 1 µs over 24 h time interval
- GPS-timing equivalent over 1 h

ANSWER: A CHIP-SCALE ATOMIC CLOK

- It can bridge GPS timing gaps for about 3000 s
 - guarantees multi-sensor synchronization (e.g., radar)
- It can detect jamming and spoofing
- It "reduces" the number of essential unknowns from 4 to 3
- In GNSS positioning: correlated height & time unknowns
 - improvement of up to 60% in the height component

Krawinkel, T., Schön, S., 2014. Applying Miniaturized Atomic Clocks for Improved Kinematic GNSS Single Point Positioning. In: Proceedings of the 27th Internaational Technical Meeting of the ION Satellite Division, ION GNSS 2014, Tampa, Florida, USA.

ERROR MODELLING & ESTIMATION

ERROR MODELLING & ESTIMATION

- 1. trajectory-level error models
- 2. sensor-level error models
- 3. relative & absolute error models
- 4. navigation and geodetic approaches to estimation

TRAJECTORY-LEVEL ERROR MODELS

- model the results of the errors, not the sources
- in principle, less sound/effective than sensor-error models
- old, good friends of us (GPS-shifts of GPS AT)
- easy to implement in software
- recently being used in terrestrial mobile mapping systems
 step 2 of two-step INS/GNSS + inverse imaging
- most times deterministic
 - piecewise Cⁿ polynomials, ...

SENSOR-LEVEL ERROR MODELS

- model the error sources
- in principle, the optimal strategy
- old stubborn friends (don't let themselves be modelled easily)
- usually being used in one-step INS/GNSS/... integration
 ... but not in step 2 of two-step INS/GNSS + inverse imaging
- most times stochastic
 - random walk, 1st order Gauss-Markov

ABSOLUTE & RELATIVE ERROR MODELS

- 1. tPA absolute error models do not allow to approach the correlated nature of trajectory errors (and of outlier effects).
- 2. tPA relative error models closer reflect actual errors; e.g. a GPS cycle slip.

Blázquez, M., Colomina, I., 2012. Relative INS/GNSS aerial control in integrated sensor orientation: models and performance. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 67, No. 1, pp. 120-133.

NAVIGATION "vs" GEODETIC ESTIMATION

INS/GNSS/... applications for trajectory estimation

- navigation: always a real-time task
 - estimation: predictive filtering (PF)

sequential least-squares with SE and SDE or more sophisticated like UKF or PF

- orientation: usually a post-mission task
 - estimation: PF, why? Is there any geodetic approach?

... 2004-old idea of dynamic networks

dynamic networks: approximate the derivatives of an SDE by finite differences.

NAVIGATION & GEODETIC ESTIMATION

Estimated Velocity vs Initial Approximation

© GAL Project, FP7 2014 velocity improvement cross-overs

dynamic networks

KFS

VS

TRAJECTORY EXPLOITATION

TRAJECTORY EXPLOITATION

- 1. the contents of INS/GNSS-derived trajectories
- 2.4D spatiotemporal calibration
- 3. simplification of image matching (FAST AT)

CONTENTS OF INS/GNSS-TRAJECTORIES

• an image 12-orientation parameters (P, V, A, Ω)

$$s_c^l = (p^l, v^l, \gamma_c^l, \omega_{lc}^c)$$

$$o_c^l = (p^l, \gamma_c^l, \gamma_c^l)$$

$$\dot{p}^l = v^l, \quad \dot{R}(\gamma)_c^l = R(\gamma)_c^l \Omega(\omega)_{lc}^c.$$

- (P, V, A, Ω) have a well-defined mathematical structure
- applications to 4D spacetime calibration, image deblurring or modelling of focal-plane shutter effects

Colomina, I., Blázquez, M., 2014. Pose versus state: are sensor position and attitude sufficient for modern photogrammetry and remote sensing. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XL-3/W1, pp. 33-37, EuroCOW 2014.

4D SPACETIME SENSOR/SYSTEM CALIBRATION

- 1. positioning / timing use to be non-separable: e.g., GPS positioning
- 2. orientation / calibration not an exception; e.g., sync. errors
- 3. 1 ms time-error determination is achievable using

$$s_c^l = (p^l, v^l, \gamma_c^l, \omega_{lc}^c)$$

and appropriate spacetime orientation-calibration models

Blázquez, M., Colomina, I., 2012. On INS/GNSS-based time synchronization in photogrammetric and remote sensing multi-sensor systems. PFG Photogrammetrie, Fernerkundung, Geoinformation, Vol. 2012, No. 2, pp. 91 104.

AT WITH LESS IMAGE MATCHING

a quality trajectory can be used for

- direct sensor orientation (DiSO)
- integrated sensor orientation (ISO)
- also for bridging non-overlapping images or reduce image processing

Blázquez, M., Colomina, I., 2012. Fast AT: a simple procedure for quasi direct orientation. ISPRS Journal of Photogrammetry and Remote Sensing Vol. 71, No. 1, pp. 1-11.

FAST AT: MAXIMAL SIMPLIFICATION / BRIDGING

SIMPLIFICATION OF IMAGE MATCHING

ge_lø_lnumerics

55. Photogrammetric Week – Stuttgart – 2015-09-08 – 34

CONCLUSIONS

1. on-going progress in motion sensing with cost reduction

- GNSS infrastructure
- inertial sensing
- timing
- 2. on-going progress in trajectory determination (geomatic, navigation & robotics community)
 - trajectory-level error models
 - sensor-level error models
- 3. better ways of trajectory exploitation

DO NOT MISS THE

February 10-12, Lausanne, EPFL - www.eurocow.org